Voir la notice de l'article provenant de la source EDP Sciences
E. González-Olivares 1 ; A. Rojas-Palma 1
@article{10_1051_mmnp_20138610,
author = {E. Gonz\'alez-Olivares and A. Rojas-Palma},
title = {Allee {Effect} in {Gause} {Type} {Predator-Prey} {Models:} {Existence} of {Multiple} {Attractors,} {Limit} cycles and {Separatrix} {Curves.} {A} {Brief} {Review}},
journal = {Mathematical modelling of natural phenomena},
pages = {143--164},
publisher = {mathdoc},
volume = {8},
number = {6},
year = {2013},
doi = {10.1051/mmnp/20138610},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138610/}
}
TY - JOUR AU - E. González-Olivares AU - A. Rojas-Palma TI - Allee Effect in Gause Type Predator-Prey Models: Existence of Multiple Attractors, Limit cycles and Separatrix Curves. A Brief Review JO - Mathematical modelling of natural phenomena PY - 2013 SP - 143 EP - 164 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138610/ DO - 10.1051/mmnp/20138610 LA - en ID - 10_1051_mmnp_20138610 ER -
%0 Journal Article %A E. González-Olivares %A A. Rojas-Palma %T Allee Effect in Gause Type Predator-Prey Models: Existence of Multiple Attractors, Limit cycles and Separatrix Curves. A Brief Review %J Mathematical modelling of natural phenomena %D 2013 %P 143-164 %V 8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138610/ %R 10.1051/mmnp/20138610 %G en %F 10_1051_mmnp_20138610
E. González-Olivares; A. Rojas-Palma. Allee Effect in Gause Type Predator-Prey Models: Existence of Multiple Attractors, Limit cycles and Separatrix Curves. A Brief Review. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 143-164. doi: 10.1051/mmnp/20138610
[1] , , SIAM J. Appl. Math. 2009 1244 1269
[2] , , , , Conser. Biol. 2007 1082 1091
[3] D. K. Arrowsmith, C. M. Place. Dynamical System. Differential equations, maps and chaotic behaviour, Chapman and Hall, London, 1992.
[4] , , , Dynamics of forest insect density: Bifurcation approach J. Theor. Biol. 1997 267 278
[5] A.D. Bazykin. Nonlinear dynamics of interacting populations. Nonlinear Sciences Series A Vol. 11, World Scientific, Singapore, 1998.
[6] , , Trends Ecol. Evol. 2007 185 191
[7] , , J. Math. Biol. 2001 221 246
[8] , J. Theor. Biol. 2002 375 394
[9] , , Theor. Popul. Biol. 2007 136 147
[10] SIAM J. Math. Anal. 1981 541 548
[11] C. Chicone, Ordinary differential equations with applications (2nd edition). Texts in Applied Mathematics 34, Springer, New York, 2006.
[12] SIAM Rev. 1979 81 99
[13] C. W. Clark, Mathematical Bioeconomics: The optimal management of renewable resources (2nd edition), John Wiley and Sons, New York, 1990.
[14] C. W. Clark. The Worldwide Crisis in Fisheries: Economic Model and Human Behavior. Cambridge University Press, Cambridge, 2007.
[15] C. S. Coleman. Hilbert’s 16th problem: How many cycles?. In: M. Braun, C. S. Coleman and D. Drew (Eds.) Differential Equations Models, Springer-Verlag, New York, (1983), 279-297.
[16] , SIAM J. Appl. Math. 1990 1348 1372
[17] , SIAM J. Appl. Math. 1986 630 642
[18] , , Trends Ecol. Evol. 1999 405 410
[19] F. Courchamp, L. Berec, J. Gascoigne. Allee effects in Ecology and Conservation. Oxford University Press, Oxford, 2007.
[20] F. Dumortier, J. Llibre, J. C. Artés.Qualitative theory of planar differential systems. Springer, Berlin, 2006.
[21] J. D. Flores, J. Mena-Lorca, B. González-Yañez, E. González-Olivares. Consequences of depensation in a Smithś bioeconomic model for open-access fishery. In (R. Mondaini and R. Dilao Eds.) Proceedings of International Symposium on Mathematical and Computational Biology. E-papers Serviços Editoriais Ltda., Río de Janeiro, (2007), 219-232.
[22] H. I. Freedman, Deterministic mathematical model in Population Ecology, Marcel Dekker, New York, 1980.
[23] , Biol. Lett. 2004 9 12
[24] V. Gaiko. Global bifurcation Theory and Hilbertś sexteenth problem. Kluwer Academic Press, Boston, 2003.
[25] , J. Appl. Ecol. 2004 801 810
[26] G. F. Gause. The Struggle for Existence. Dover Publications Inc, London, 1971.
[27] Ecology 1996 2014 2026
[28] L. Ginzburg, M. Colyvan. Ecological Orbits: How Planets Move and Populations Grow. Oxford University Press, Oxford, 2004.
[29] B-S. Goh, Management and Analysis of Biological Populations, Elsevier Scientific Publishing Company, Amsterdam, 1980.
[30] , Ecol. Model. 2003 135 146
[31] , , , Discrete Cont. Dyn-B. 2006 525 534
[32] E. González-Olivares, B. González-Yañez, J. Mena-Lorca, R. Ramos-Jiliberto. Modelling the Allee effect: are the different mathematical forms proposed equivalents? In R. Mondaini (Ed.) Proceedings of International Symposium on Mathematical and Computational Biology. E-papers Serviços Editoriais Ltda., Río de Janeiro, (2007), 53-71.
[33] , , , Appl. Math. Model. 2011 366 381
[34] , , , , , Nonlinear Anal-Real. 2011 2931 2942
[35] , Bull. Math. Biol. 2011 1378 1397
[36] , Math. Method App. Sci. 2012 963 975
[37] , , , , Consequences of double Allee effect on the number of limit cycles in a predator-prey model Comp. Math. App. 2011 3449 3463
[38] B. González-Yañez, E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response, In R. Mondaini (Ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology, E-Papers Serviços Editoriais Ltda, Río de Janeiro, Vol. 2 (2004), 358-373.
[39] Math. Biosci. 2000 203 215
[40] J. Math. Biol. 2010 59 74
[41] , Ecol. Model. 2001 1 9
[42] , , Am. Nat. 2009 72 88
[43] , , Math. Method App. Sci. 2007 501 511
[44] J. Math. Anal. Appl. 2004 113 122
[45] , , Discrete Cont. Dyn. S. 2008 857 871
[46] , Popul. Ecol. 2004 55 63
[47] M. Kot, Elements of Mathematical Ecology, Cambridge University Press 2001.
[48] , Uniqueness of limit cycles in Gause type models of predator-prey systems Math. Biosci. 1988 67 84
[49] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (2nd Edition), Springer-Verlag, New York, 1998.
[50] , , J. Dyn. Differ. Equ. 2008 535 571
[51] , Fish Fish 2001 33 58
[52] , , J. Anim. Ecol. 1978 204 221
[53] R. M. May, Stability and complexity in model ecosystems(2nd Edition), Princeton University Press, Princeton, NJ, 2001.
[54] H. Meneses-Alcay, E. González-Olivares. Consequences of the Allee effect on Rosenzweig-MacArthur predator-prey model. In R. Mondaini (ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003. E-papers Serviços Editoriais Ltda., Río de Janeiro, Volumen 2 (2004), 264-277.
[55] , , , P. Roy. Soc. B. 2006 193 198
[56] , Chaos Solitons Fract. 2008 1343 1355
[57] , Math. Mod. Nat. Phenom. 2008 131 148
[58] W. W. Murdoch, C. J. Briggs, R. M. Nisbet. Consumer-Resources Dynamics. Monographs in Population Biology 36, Princeton University Press, Princeton, 2003.
[59] , , Ecol. Model. 1996 31 42
[60] L. Perko. Differential Equations and Dynamical Systems (3rd. Edition). Springer-Verlag, New York, 2001.
[61] A. Rojas-Palma, E. González-Olivares, B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey, In R. Mondaini (Ed.) Proceedings of International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., Río de Janeiro, (2007), 295-321.
[62] , Math. Biosci. 2008 161 179
[63] , , Ecol. Complex. 2013 12 27
[64] , ICES J. Mar. Sci. 1995 615 628
[65] , Trends Ecol. Evol. 1999 401 405
[66] , , Oikos 1999 185 190
[67] , , Appl. Math. Lett. 1996 85 90
[68] , , P. Am. Math. Soc. 1997 2041 2050
[69] R. J. Taylor. Predation. Chapman and Hall, New York,1984.
[70] P. Turchin. Complex population dynamics. A theoretical/empirical synthesis. Mongraphs in Population Biology 35 Princeton University Press, Princeton, NJ, 2003.
[71] , , , Math. Biosci. 2007 451 469
[72] K. Vilches-Ponce, E. González-Olivares. A Gause-type predator-prey model with a non-differentiable functional response. (2013) submitted.
[73] , Speeds of invasion in a model with strong or weak Allee effects Math. Bioci. 2001 83 97
[74] , , J. Math. Biol. 2011 291 331
[75] S. Wolfram Research, Mathematica: A System for Doing Mathematics by Computer (2nd edition), Wolfram Research, Addison Wesley 1991.
[76] , , Bull. Math. Biol. 1988 379 109
[77] , Nonlinearity 2003 1185 1201
[78] , Appl. Math. Comp. 2010 3542 3556
Cité par Sources :