Biological Invasions in Heterogeneous Environments: The Coupled Map Lattice Framework
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 96-106.

Voir la notice de l'article provenant de la source EDP Sciences

Spatial heterogeneity greatly affects the population spread. Although the theory for biological invasion in heterogeneous spatially continuous habitats have received considerable attention, spatially discrete models have remained outside of the mainstream. In this study, we formulate and analyze a Coupled Map Lattice model for a single species population invading a two dimensional heterogeneous environment. The population growth rate and dispersal coefficient depend on the site quality. We first find an analytical criterium for the spread success in terms of the population growth rate and the dispersal coefficient in unfavorable regions. We then implemented our model for two distinct spatial configurations: periodical stripe-like and randomized environments. The spread rate is computed numerically and it shows a decrease with an increase of the fraction of the hostile sites. However, we observed that invasion success does not depend on the fraction of favorable sites but crucially depends on the connectivity of favorable regions.
DOI : 10.1051/mmnp/20138607

L.A.D. Rodrigues 1 ; D.C. Mistro 1

1 Department of Mathematics, Federal University of Santa Maria, Santa Maria, RS, Brasil.
@article{MMNP_2013_8_6_a6,
     author = {L.A.D. Rodrigues and D.C. Mistro},
     title = {Biological {Invasions} in {Heterogeneous} {Environments:} {The} {Coupled} {Map} {Lattice} {Framework}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2013},
     doi = {10.1051/mmnp/20138607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138607/}
}
TY  - JOUR
AU  - L.A.D. Rodrigues
AU  - D.C. Mistro
TI  - Biological Invasions in Heterogeneous Environments: The Coupled Map Lattice Framework
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 96
EP  - 106
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138607/
DO  - 10.1051/mmnp/20138607
LA  - en
ID  - MMNP_2013_8_6_a6
ER  - 
%0 Journal Article
%A L.A.D. Rodrigues
%A D.C. Mistro
%T Biological Invasions in Heterogeneous Environments: The Coupled Map Lattice Framework
%J Mathematical modelling of natural phenomena
%D 2013
%P 96-106
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138607/
%R 10.1051/mmnp/20138607
%G en
%F MMNP_2013_8_6_a6
L.A.D. Rodrigues; D.C. Mistro. Biological Invasions in Heterogeneous Environments: The Coupled Map Lattice Framework. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 96-106. doi : 10.1051/mmnp/20138607. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138607/

[1] H. Berestycki, F. Hamel, L. Roques J. Math. Pures Appl. 2005 1101 1146

[2] T. De-Camino-Beck, M.A. Lewis Ecol. Model. 2009 3394 3403

[3] C. Dewhirst, F. Lutscher Ecology 2009 1338 1345

[4] L. Fahrig Ecol. Appl. 2002 346 353

[5] M.P. Hassell, H.N. Comins, R.M. May Nature 1991 255 258

[6] P. Kareiva. Influence of Vegetation Texture on Herbivore Populations: Resource Concentration and Herbivore Moviment in R. F. Denno and M. S. McClure (eds.), Variable Plants and Herbivores in Natural and Managed Systems, 259–289. Academic Press, New York, 1983.

[7] P. Kareiva.Trivial Movement and Foraging by Crop Colonizers in M. Kogan (ed.) Ecological Theory and Integrated Pest Manegement Practice, 59–82. John Wiley Sons, New York, 1986.

[8] P. Kareiva, G. Odell Am. Nat. 1987 233 270

[9] K. Kawasaki, N. Shigesada Japan. J. Indust. Appl. Math. 2007 3 15

[10] K. Kawasaki, K. Asano, N. Shigesada Bull. Math. Biol. 2012 1448 1467

[11] T.H. Keitt, M.A. Lewis, R.D. Holt Am. Nat. 2001 203 216

[12] N. Kinezaki, K. Kawasaki, F. Takasu, N. Shigesada Theor. Popul. Biol. 2003 291 302

[13] N. Kinezaki, K. Kawasaki, N. Shigesada Popul. Ecol. 2006 263 270

[14] N. Kinezaki, K. Kawasaki, N. Shigesada Theor. Popul. Biol. 2010 298 308

[15] S. A. Levin Ecology 1992 1943 1967

[16] M. A. Lewis, G. Schmitz Forma 1996 1 25

[17] F. Lutscher, M. A. Lewis, E. Mccauley Bull. Math. Biol. 2006 2129 2160

[18] V. Méndez, I. Llopis, D. Campos, W. Horsthemke Bull. Math. Biol. 2010 432 443

[19] D.C. Mistro, L. A. D. Rodrigues, M. C. Varriale Bull. Math. Biol. 2009 1934 1953

[20] D.C. Mistro, L.A.D. Rodrigues, S. Petrovskii Ecol. Comp. 2012 16 32

[21] D. Mollison Math. Biosci. 1991 255 287

[22] A. Morozov, S. Petrovskii, B.-L. Li J. theor. Biol. 2006 18 35

[23] A. Okubo, S.A. Levin. Diffusion and ecological problems. (2nd edn.) Springer, Berlin, 2001.

[24] L. A. D. Rodrigues, D. C. Mistro, S. V. Petrovskii Bull. Math. Biol. 2011 1812 1840

[25] L. A. D. Rodrigues, D. C. Mistro, S. V. Petrovskii Theor. Ecol. 2012 341 362

[26] L. A. D. Rodrigues, M. C. Varriale, W. A. C. Godoy, D. C. Mistro. Spatiotemporal dynamics of an insect population in response to chemical substances. Ecol. Comp. (2013) accepted.

[27] N. Shigesada, K. Kawasaki. Invasion and the range expansion of species: effects of long-distance dispersal. In: Bullock, J., Kenward, R., Hails, R. (Eds.), Dispersal. Blackwell Science, Oxford, pp. 350–373, 2002.

[28] N. Shigesada, K. Kawasaki, E. Teramoto Theor. Popul. Biol. 1986 143 160

[29] N. Shigesada, K. Kawasaki, E. Teramoto. The speeds of traveling frontal waves in Heterogeneous environments. In: Teramoto, E., Yamaguti, M. (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. In: Lecture Notes in Biomathematics, vol. 71. Springer, Berlin, pp. 87–97, 1987.

[30] N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, 1997

[31] R. W. Van Kirk, M. A. Lewis Bull. Math. Biol. 1997 107 137

[32] H.F. Weinberger J. Math. Biol. 2002 511 548

[33] H.F. Weinberger, K. Kawasaki, N. Shigesada J. Math. Biol. 2008 387 411

[34] K. A. With Cons. Biol. 2002 1192 1203

[35] S.M. White, K.A.J. White J. Theor. Biol. 2005 463 475

Cité par Sources :