Travelling Waves in Plankton Dynamics
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 64-79.

Voir la notice de l'article provenant de la source EDP Sciences

A recently proposed model for the investigation of diffusivity in planktonic systems containing toxin-producing phytoplanktons is here reconsidered. We show the existence of planktonic travelling waves. Numerical simulations validate the analytical findings, to elucidate the sensitivity of the results in dependence of the diffusion coefficients.
DOI : 10.1051/mmnp/20138605

M. Semplice 1 ; E. Venturino 1

1 Dipartimento di Matematica “Giuseppe Peano” Università di Torino, Italy
@article{MMNP_2013_8_6_a4,
     author = {M. Semplice and E. Venturino},
     title = {Travelling {Waves} in {Plankton} {Dynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {64--79},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2013},
     doi = {10.1051/mmnp/20138605},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138605/}
}
TY  - JOUR
AU  - M. Semplice
AU  - E. Venturino
TI  - Travelling Waves in Plankton Dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 64
EP  - 79
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138605/
DO  - 10.1051/mmnp/20138605
LA  - en
ID  - MMNP_2013_8_6_a4
ER  - 
%0 Journal Article
%A M. Semplice
%A E. Venturino
%T Travelling Waves in Plankton Dynamics
%J Mathematical modelling of natural phenomena
%D 2013
%P 64-79
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138605/
%R 10.1051/mmnp/20138605
%G en
%F MMNP_2013_8_6_a4
M. Semplice; E. Venturino. Travelling Waves in Plankton Dynamics. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 64-79. doi : 10.1051/mmnp/20138605. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138605/

[1] D. M. L. Anderson. Toxic algae blooms and red tides: a global perspective. In Red Tides: Biology, Environmental Science and Toxicology, T. Okaichi, D. M. Anderson, T. Nemoto (Editors). Elsevier: New York, USA (1989), 11–21.

[2] S. Chaudhuri, J. Chattopadhyay, E. Venturino J. Biol. Phys. 2012 331 348

[3] S. Chaudhuri, S. Roy, J. Chattopadhyay. Comparison of plankton dynamics in the ‘presence’ or ‘absence’ of toxic phytoplankton. Appl. Math. Comput., sumbitted for publication.

[4] J. Chattopadhyay, R. R. Sarkar, S. Mandal J. Theor. Biol. 2002 333 334

[5] J. Chattopadhyay, R. R. Sarkar, A. El Abdllaoui IMA J. Math. Appl. Med. Biol. 2002 137 161

[6] G. M. Hallegraeff Phycologia 1993 79 99

[7] H. Malchow, S. Petrovskii, E. Venturino. Spatiotemporal patterns in Ecology and Epidemiology. CRC, Boca Raton, 2008.

[8] S. Roy, S. Alam, J. Chattopadhyay Bull. Math. Biol. 2006 2303 2320

[9] S. Roy, S. Bhattacharya, P. Das, J. Chattopadhyay J. Biol. Phys. 2007 1 17

[10] S. Roy J. Biol. Phys. 2008 459 474

[11] T. Smayda. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Toxic Marine Phytoplankton, E. Graneli, B. Sundstrom, L. Edler, D. M. Anderson (Editors), Elsevier, New York, USA, 1990, 29–40.

Cité par Sources :