The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 5-24.

Voir la notice de l'article provenant de la source EDP Sciences

The formation, persistence and movement of self-organised biological aggregations are mediated by signals (e.g., visual, acoustic or chemical) that organisms use to communicate with each other. To investigate the effect that communication has on the movement of biological aggregations, we use a class of nonlocal hyperbolic models that incorporate social interactions and different communication mechanisms between group members. We approximate the maximum speed for left-moving and right-moving groups, and show numerically that the travelling pulses exhibited by the nonlocal hyperbolic models actually travel at this maximum speed. Next, we use the formula for the speed of a travelling pulse to calculate the reversal time for the zigzagging behaviour, and show that the communication mechanisms have an effect on these reversal times. Moreover, we show that how animals communicate with each other affects also the density structure of the zigzags. These findings offer a new perspective on the complexity of the biological factors behind the formation and movement of various aggregations.
DOI : 10.1051/mmnp/20138602

R. Eftimie 1

1 Department of Mathematics, University of Dundee, Dundee, DD1 4HN, UK
@article{MMNP_2013_8_6_a1,
     author = {R. Eftimie},
     title = {The {Effect} of {Different} {Communication} {Mechanisms} on the {Movement} and {Structure} of {Self-Organised} {Aggregations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2013},
     doi = {10.1051/mmnp/20138602},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/}
}
TY  - JOUR
AU  - R. Eftimie
TI  - The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 5
EP  - 24
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/
DO  - 10.1051/mmnp/20138602
LA  - en
ID  - MMNP_2013_8_6_a1
ER  - 
%0 Journal Article
%A R. Eftimie
%T The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations
%J Mathematical modelling of natural phenomena
%D 2013
%P 5-24
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/
%R 10.1051/mmnp/20138602
%G en
%F MMNP_2013_8_6_a1
R. Eftimie. The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 5-24. doi : 10.1051/mmnp/20138602. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/

[1] M. Aldana, C. Huepe J. Stat. Phys. 2003 135 153

[2] I. Aoki Bull. Japan Soc. Sci. Fish 1982 1081 1088

[3] S. Bazazi, F. Bartumeus, J.J. Hale, I.D. Couzin PLOS Comput. Biol. 2012

[4] N.W.F. Bode, D.W. Franks, A.J. Wood J. Theor. Biol. 2010 292 299

[5] N.W.F. Bode, A.J. Wood, D.W. Franks Anim. Behav. 2011 29 38

[6] C.A.H. Bousquet, D.J.T. Sumpter, M.B. Manser Proc. R. Soc. B 2011 1482 1488

[7] C. Brown, K.N. Laland Social learning in fishes: a review Fish and fisheries 2003 280 288

[8] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, S. J. Simpson Science 2006 1402 1406

[9] J. Buhl, G.A. Sword, S. J. Simpson Interface Focus 2012 757 763

[10] P.-L. Buono, R. Eftimie, Analysis of Hopf-Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations, Math. Models Methods Appl. Sci. (2013), To Appear.

[11] G. Chaverri, E.H. Gillam, T.H. Kunz Behav. Ecol. 2013 481 487

[12] I. D. Couzin, J. Krause, R. James, G.D. Ruxton, N. R. Franks J. Theor. Biol. 2002 1 11

[13] A. Czirók, A.-L. Barabási, T. Vicsek Physical Review Letters 1999 209 212

[14] M.R. D’Orsogna, Y.L. Chuang, A.L. Bertozzi, L.S. Chayes Phys. Rev. Lett. 2006 104302

[15] V. Dossetti J. Phys. A: Math. Theor. 2012 035003

[16] R. Eftimie Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review J. Math. Biol. 2012 35 75

[17] R. Eftimie, G. De Vries, M. A. Lewis Proc. Natl. Acad. Sci. 2007 6974 6979

[18] R. Eftimie, G. De Vries, M. A. Lewis, F. Lutscher Bull. Math. Biol. 2007 1537 1566

[19] R. Eftimie, G. De Vries, M.A. Lewis J. Math. Biol. 2009 37 74

[20] R. Erban, H. G. Othmer SIAM J. Appl. Math. 2004 361 391

[21] R. Fetecau, R. Eftimie J. Math. Biol. 2009 545 579

[22] R.C. Fetecau Math. Model. Method. Appl. Sci. 2011 1539

[23] V. Gazi, K.M. Passino Int. J. Control 2004 1567 1579

[24] S. Gueron, S. A. Levin, D. I. Rubenstein J. Theor. Biol. 1996 85 98

[25] C. K. Hemelrijk, H. Kunz Behay. Ecol. 2005 178 187

[26] T. Hillen J. Math. Ana. Appl. 1997 360 374

[27] D.J. Hoare, I.D. Couzin, J.G. Godin, J. Krause Anim. Behav. 2004 155 164

[28] D. Horstmann, A. Stevens J. Nonlinear. Sci. 2004 1 25

[29] A. Huth, C. Wissel J. Theor. Biol. 1992 365 385

[30] Ecol. Model. 1994 135 145

[31] Y. Inada Complexity International 2001 1 9

[32] M. Iwasa, K. Iida, D. Tanaka Phys. Rev. E 2010 046220

[33] E.F. Keller, L.A. Segel J. Theor. Biol. 1971 235 248

[34] G. Kerth, C. Ebert, C. Schmidtke Proc. R. Soc. B 2006 2785 2790

[35] H. Levine, W.-J. Rappel, I. Cohen Phys. Rev. E 2000 01701

[36] R. Lui, Z.A. Wang J. Math. Biol. 2010 739 761

[37] R. Lukeman, Y.-X. Li, L. Edelstein-Keshet Proc. Natl. Acad. Sci. 2010 12576 12580

[38] T. Nagai, T. Ikeda J. Math. Biol. 1991 169 184

[39] S.T.D. New, R.A. Peters Current Zoology 2010 327 336

[40] O.J. O’Loan, M.R. Evans J. Phys A: Math. Gen. 1999 L99

[41] J. K. Parrish, S. V. Viscido, D. Grunbaum Bioll. Bull. 2002 296 305

[42] B. Pfistner, A one dimensional model for the swarming behaviour of Myxobacteria, Biological Motion, Lecture Notes on Biomathematics, 89 (W. Alt, G. Hoffmann, eds.), Springer, 1990, pp. 556-563.

[43] H. Pomeroy, F. Heppner The Auk 1992 256 267

[44] J.R. Raymond, M.R. Evans Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006 036112

[45] H. Reuter, B. Breckling Ecol. Model. 1994 147159

[46] C. W. Reynolds Computer Graphics 1987 25 34

[47] J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzanand, B. Perthame PLOS Computational Biology 2010 e1000890

[48] H.R. Schwetlick Proc. Appl. Math. Mech 2003 476 478

[49] S. Stocker Math. Biosci 1999 167 190

[50] C. M. Topaz, A. L. Bertozzi SIAM J. Appl. Math. 2006 152 174

[51] C. M. Topaz, A. L. Bertozzi, M. A. Lewis Bull. Math. Bio. 2006 1601 1623

[52] C. Torney, Z. Neufeld, I. D. Couzin Proc. Natl. Acad. Sci. 2009 22055 22060

[53] S. V. Viscido, J. K. Parish, D. Grunbaum Mar. Ecol. Prog. Ser. 2004 239 249

[54] C. Xue, H.J. Hwang, K.J. Painter, R. Erban Bull. Math. Biol. 2011 1695 1733

Cité par Sources :