Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_6_a1, author = {R. Eftimie}, title = {The {Effect} of {Different} {Communication} {Mechanisms} on the {Movement} and {Structure} of {Self-Organised} {Aggregations}}, journal = {Mathematical modelling of natural phenomena}, pages = {5--24}, publisher = {mathdoc}, volume = {8}, number = {6}, year = {2013}, doi = {10.1051/mmnp/20138602}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/} }
TY - JOUR AU - R. Eftimie TI - The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations JO - Mathematical modelling of natural phenomena PY - 2013 SP - 5 EP - 24 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/ DO - 10.1051/mmnp/20138602 LA - en ID - MMNP_2013_8_6_a1 ER -
%0 Journal Article %A R. Eftimie %T The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations %J Mathematical modelling of natural phenomena %D 2013 %P 5-24 %V 8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/ %R 10.1051/mmnp/20138602 %G en %F MMNP_2013_8_6_a1
R. Eftimie. The Effect of Different Communication Mechanisms on the Movement and Structure of Self-Organised Aggregations. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 6, pp. 5-24. doi : 10.1051/mmnp/20138602. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138602/
[1] J. Stat. Phys. 2003 135 153
,[2] Bull. Japan Soc. Sci. Fish 1982 1081 1088
[3] PLOS Comput. Biol. 2012
, , ,[4] J. Theor. Biol. 2010 292 299
, ,[5] Anim. Behav. 2011 29 38
, ,[6] Proc. R. Soc. B 2011 1482 1488
, ,[7] Social learning in fishes: a review Fish and fisheries 2003 280 288
,[8] Science 2006 1402 1406
, , , , , ,[9] Interface Focus 2012 757 763
, ,[10] P.-L. Buono, R. Eftimie, Analysis of Hopf-Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations, Math. Models Methods Appl. Sci. (2013), To Appear.
[11] Behav. Ecol. 2013 481 487
, ,[12] J. Theor. Biol. 2002 1 11
, , , ,[13] Physical Review Letters 1999 209 212
, ,[14] Phys. Rev. Lett. 2006 104302
, , ,[15] J. Phys. A: Math. Theor. 2012 035003
[16] Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review J. Math. Biol. 2012 35 75
[17] Proc. Natl. Acad. Sci. 2007 6974 6979
, ,[18] Bull. Math. Biol. 2007 1537 1566
, , ,[19] J. Math. Biol. 2009 37 74
, ,[20] SIAM J. Appl. Math. 2004 361 391
,[21] J. Math. Biol. 2009 545 579
,[22] Math. Model. Method. Appl. Sci. 2011 1539
[23] Int. J. Control 2004 1567 1579
,[24] J. Theor. Biol. 1996 85 98
, ,[25] Behay. Ecol. 2005 178 187
,[26] J. Math. Ana. Appl. 1997 360 374
[27] Anim. Behav. 2004 155 164
, , ,[28] J. Nonlinear. Sci. 2004 1 25
,[29] J. Theor. Biol. 1992 365 385
,[30] Ecol. Model. 1994 135 145
[31] Complexity International 2001 1 9
[32] Phys. Rev. E 2010 046220
, ,[33] J. Theor. Biol. 1971 235 248
,[34] Proc. R. Soc. B 2006 2785 2790
, ,[35] Phys. Rev. E 2000 01701
, ,[36] J. Math. Biol. 2010 739 761
,[37] Proc. Natl. Acad. Sci. 2010 12576 12580
, ,[38] J. Math. Biol. 1991 169 184
,[39] Current Zoology 2010 327 336
,[40] J. Phys A: Math. Gen. 1999 L99
,[41] Bioll. Bull. 2002 296 305
, ,[42] B. Pfistner, A one dimensional model for the swarming behaviour of Myxobacteria, Biological Motion, Lecture Notes on Biomathematics, 89 (W. Alt, G. Hoffmann, eds.), Springer, 1990, pp. 556-563.
[43] The Auk 1992 256 267
,[44] Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006 036112
,[45] Ecol. Model. 1994 147159
,[46] Computer Graphics 1987 25 34
[47] PLOS Computational Biology 2010 e1000890
, , , , ,[48] Proc. Appl. Math. Mech 2003 476 478
[49] Math. Biosci 1999 167 190
[50] SIAM J. Appl. Math. 2006 152 174
,[51] Bull. Math. Bio. 2006 1601 1623
, ,[52] Proc. Natl. Acad. Sci. 2009 22055 22060
, ,[53] Mar. Ecol. Prog. Ser. 2004 239 249
, ,[54] Bull. Math. Biol. 2011 1695 1733
, , ,Cité par Sources :