The Stability and Slow Dynamics of Two-Spike Patterns for a Class of Reaction-Diffusion System
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 206-232.

Voir la notice de l'article provenant de la source EDP Sciences

The slow dynamics and linearized stability of a two-spike quasi-equilibrium solution to a general class of reaction-diffusion (RD) system with and without sub-diffusion is analyzed. For both the case of regular and sub-diffusion, the method of matched asymptotic expansions is used to derive an ODE characterizing the spike locations in the absence of any 𝒪(1) time-scale instabilities of the two-spike quasi-equilibrium profile. These fast instabilities result from unstable eigenvalues of a certain nonlocal eigenvalue problem (NLEP) that is derived by linearizing the RD system around the two-spike quasi-equilibrium solution. For a particular sub-class of the reaction kinetics, it is shown that the discrete spectrum of this NLEP is determined by the roots of some simple transcendental equations. From a rigorous analysis of these transcendental equations, explicit sufficient conditions are given to predict the occurrence of either Hopf bifurcations or competition instabilities of the two-spike quasi-equilibrium solution. The theory is illustrated for several specific choices of the reaction kinetics.
DOI : 10.1051/mmnp/20138513

Y. Nec 1 ; M.J. Ward 1

1 Department of Mathematics, University of British Columbia 1984 Mathematics Road, Vancouver, V6T1Z2, BC, Canada
@article{MMNP_2013_8_5_a12,
     author = {Y. Nec and M.J. Ward},
     title = {The {Stability} and {Slow} {Dynamics} of {Two-Spike} {Patterns} for a {Class} of {Reaction-Diffusion} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {206--232},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138513},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138513/}
}
TY  - JOUR
AU  - Y. Nec
AU  - M.J. Ward
TI  - The Stability and Slow Dynamics of Two-Spike Patterns for a Class of Reaction-Diffusion System
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 206
EP  - 232
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138513/
DO  - 10.1051/mmnp/20138513
LA  - en
ID  - MMNP_2013_8_5_a12
ER  - 
%0 Journal Article
%A Y. Nec
%A M.J. Ward
%T The Stability and Slow Dynamics of Two-Spike Patterns for a Class of Reaction-Diffusion System
%J Mathematical modelling of natural phenomena
%D 2013
%P 206-232
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138513/
%R 10.1051/mmnp/20138513
%G en
%F MMNP_2013_8_5_a12
Y. Nec; M.J. Ward. The Stability and Slow Dynamics of Two-Spike Patterns for a Class of Reaction-Diffusion System. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 206-232. doi : 10.1051/mmnp/20138513. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138513/

[1] W. Chen, M. J. Ward Europ. J. Appl. Math. 2009 187 214

[2] A. Doelman, W. Eckhaus, T. J. Kaper SIAM J. Appl. Math. 2000 1080 1102

[3] A. Doelman, W. Eckhaus, T. J. Kaper SIAM J. Appl. Math. 2000 2036 2061

[4] A. Doelman, R. A. Gardner, T. Kaper Indiana U. Math. Journ. 2001 443 507

[5] A. Doelman, T. Kaper SIAM J. Appl. Dyn. Sys. 2003 53 96

[6] A. Doelman, T. Kaper, K. Promislow SIAM J. Math. Anal. 2007 1760 1789

[7] J. Ehrt, J. D. Rademacher, M. Wolfrum, First and second order semi-strong interaction of pulses in the Schnakenburg model. preprint, (2012).

[8] A. Gierer, H. Meinhardt Kybernetik 1972 30 39

[9] A. A. Golovin, B. J. Matkowsky, V. A. Volpert SIAM J. Appl. Math. 2008 251 272

[10] P. Gray, Scott S. K. Chem. Eng. Sci. 1984 1087 1097

[11] B. I. Henry, S. L. Wearne SIAM J. Appl. Math. 2002 870 887

[12] D. Iron, M. J. Ward, J. Wei Physica D 2001 25 62

[13] D. Iron, M. J. Ward SIAM J. Appl. Math. 2002 1924 1951

[14] T. Kolokolnikov, M. Ward, J. Wei Studies in Appl. Math. 2005 21 71

[15] T. Kolokolnikov, M. Ward, J. Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Disc. Cont. Dyn. Sys Series B., to appear, (2013), (34 pages).

[16] C. S. Lin, W. M. Ni, I. Takagi. Large amplitude stationary solutions to a chemotaxis system. J. Diff. Eq. 72 (1), (1988), 1-27.

[17] H. Meinhardt. The Algorithmic Beauty of Sea Shells. Springer-Verlag, Berlin, (1995).

[18] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[19] I. Moyls, W. H. Tse, M. J. Ward. On explicitly solvable nonlocal eigenvalue problems and the stability of localized pulses. to be submitted, Applied Math Letters, (2013).

[20] C. Muratov, V. V. Osipov SIAM J. Appl. Math. 2002 1463 1487

[21] Y. Nec, V. A. Volpert, Nepomnyashchy A. A. Discr. Cont. Dyn. Sys. Series A. 2010 827 846

[22] Y. Nec, Nepomnyashchy A. A. Math. Model. Nat. Phenom. 2007 77 105

[23] Y. Nec, Nepomnyashchy A. A. J. Physics A: Math. Theor. 2007 14687 14702

[24] Y. Nec, Ward M. J. Physica D. 2012 947 963

[25] Y. Nec, M. J. Ward Math. Model. of Nat. Phenom. 2013 55 87

[26] Nec Y. Studies Appl. Math. 2012 272 299

[27] K. B. Oldham, J. Spanier. The fractional calculus. Academic Press, New York, 1974.

[28] I. Podlubny. Fractional differential equations. Academic Press, San Diego, 1999.

[29] J. D. Rademacher SIAM J. App. Dyn. Syst. 2013 175 203

[30] R. K. Saxena, A. M. Mathai, H. J. Haubold Astrophys. Space Sci. 2006 289 296

[31] W. Sun, M. J. Ward, R. Russell SIAM J. App. Dyn. Sys 2005 904 953

[32] I. Moyls, W. H. Tse, M. J. Ward. On explicitly solvable nonlocal eigenvalue problems and the stability of localized pulses. to be submitted, Applied Math Letters, (2013).

[33] A. Turing Phil. Trans. Roy. Soc. B. 1952 37 72

[34] J. C. Tzou, A. Bayliss, B. J. Matkowsky, V. A. Volpert Math. Model. Nat. Phenom. 2011 87 118

[35] J. C. Tzou, A. Bayliss, B. J. Matkowsky, V. A. Volpert Europ. J. Appl. Math. 2011 423 453

[36] J. C. Tzou, Y. Nec, M. J. Ward Europ. J. Appl. Math. 2013 515 564

[37] H. Van Der Ploeg, A. Doelman Indiana U. Math. J. 2005 1219 1301

[38] M. J. Ward, J. Wei J. Nonlinear Science 2003 209 264

[39] J. Wei Europ. J. Appl. Math. 1999 353 378

[40] J. Wei. Existence and stability of spikes for the Gierer-Meinhardt system. book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations. Vol. 5 (M. Chipot ed.), Elsevier, (2008), 489–581.

[41] M. Wolfrum, J. Ehrt WIAS Preprint 2007

Cité par Sources :