Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_5_a11, author = {T. Tzaneteas and I.M. Sigal}, title = {On {Abrikosov} {Lattice} {Solutions} of the {Ginzburg-Landau} {Equation}}, journal = {Mathematical modelling of natural phenomena}, pages = {190--205}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2013}, doi = {10.1051/mmnp/20138512}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/} }
TY - JOUR AU - T. Tzaneteas AU - I.M. Sigal TI - On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation JO - Mathematical modelling of natural phenomena PY - 2013 SP - 190 EP - 205 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/ DO - 10.1051/mmnp/20138512 LA - en ID - MMNP_2013_8_5_a11 ER -
%0 Journal Article %A T. Tzaneteas %A I.M. Sigal %T On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation %J Mathematical modelling of natural phenomena %D 2013 %P 190-205 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/ %R 10.1051/mmnp/20138512 %G en %F MMNP_2013_8_5_a11
T. Tzaneteas; I.M. Sigal. On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 190-205. doi : 10.1051/mmnp/20138512. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/
[1] J. Explt. Theoret. Phys. (USSR) 1957 1147 1182
[2] J. Funct. Anal. 2006 661 702
, ,[3] Selecta Math. (N.S.) 2007 183 202
,[4] L. V. Alfors. Complex analysis. McGraw-Hill, New York, 1979.
[5] SIAM J. Appl. Math. 2000 149 171
[6] Commun. Math. Phys. 2006
[7] A. Ambrosetti, G. Prodi. A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge, 1993.
[8] Phys. D 1992 36 56
, ,[9] J. Fun. Anal. 1989 259 295
,[10] Nucleation of superconductivity in decreasing fields European J. Appl. Math. 1994 449 468
[11] Macroscopic models of superconductivity SIAM Rev. 529 560
, ,[12] SIAM Rev. 1992 54 81
, ,[13] J. Math. Phys. 2001 4915 4926
[14] M. Dutour. Bifurcation vers l’état d’Abrikosov et diagramme des phases. Thesis Orsay, http://www.arxiv.org/abs/math-ph/9912011.
[15] Z. Physik 1964 32 42
[16] S. Fournais, B. Helffer. Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77, Birkhäuser, 2010.
[17] Comm. Math. Phys. 2000 257 275
,[18] S. Gustafson, I. M. Sigal. Mathematical Concepts of Quantum Mechanics. Springer, 2006.
[19] J. Math. Phys. 015217 2010
, ,[20] A. Jaffe, C. Taubes. Vortices and Monopoles: Structure of Static Gauge Theories. Progress in Physics 2. Birkhäuser, Boston, Basel, Stuttgart, 1980.
[21] Phys. Rev. 1964 A1226 A1227
, ,[22] Phys. Rev. 1965 A523 A528
[23] J. Statist. Phys. 1998 431 518
,[24] J. Math. Phys. 1967 2351 2356
[25] JETP. 1997 818 823
[26] J. Rubinstein. Six Lectures on Superconductivity. Boundaries, interfaces, and transitions (Banff, AB, 1995), 163–184, CRM Proc. Lecture Notes, 13, Amer. Math. Soc., Providence, RI, 1998.
[27] E. Sandier, S. Serfaty. Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and their Applications, vol.l 70, Birkhäuser, 2007.
[28] Z. Angew. Math. Mech. 2001 523 539
[29] Contemporary Mathematics 195 213 2011
,Cité par Sources :