On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 190-205.

Voir la notice de l'article provenant de la source EDP Sciences

Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result than was stated there. This result is recorded in the present paper. The proofs remain the same as in [29], apart from some streamlining.
DOI : 10.1051/mmnp/20138512

T. Tzaneteas 1 ; I.M. Sigal 2

1 Department of Mathematics, Aarhus University, Aarhus, Denmark
2 Dept. of Mathematics, Univ. of Toronto, Toronto, Canada, M5S 2E4
@article{MMNP_2013_8_5_a11,
     author = {T. Tzaneteas and I.M. Sigal},
     title = {On {Abrikosov} {Lattice} {Solutions} of the {Ginzburg-Landau} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {190--205},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/}
}
TY  - JOUR
AU  - T. Tzaneteas
AU  - I.M. Sigal
TI  - On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 190
EP  - 205
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/
DO  - 10.1051/mmnp/20138512
LA  - en
ID  - MMNP_2013_8_5_a11
ER  - 
%0 Journal Article
%A T. Tzaneteas
%A I.M. Sigal
%T On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation
%J Mathematical modelling of natural phenomena
%D 2013
%P 190-205
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/
%R 10.1051/mmnp/20138512
%G en
%F MMNP_2013_8_5_a11
T. Tzaneteas; I.M. Sigal. On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 190-205. doi : 10.1051/mmnp/20138512. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138512/

[1] A. A. Abrikosov J. Explt. Theoret. Phys. (USSR) 1957 1147 1182

[2] A. Aftalion, X. Blanc, F. Nier J. Funct. Anal. 2006 661 702

[3] A. Aftalion, S. Serfaty Selecta Math. (N.S.) 2007 183 202

[4] L. V. Alfors. Complex analysis. McGraw-Hill, New York, 1979.

[5] Y. Almog SIAM J. Appl. Math. 2000 149 171

[6] Y. Almog Commun. Math. Phys. 2006

[7] A. Ambrosetti, G. Prodi. A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge, 1993.

[8] E. Barany, M. Golubitsky, J. Turski Phys. D 1992 36 56

[9] M.S. Berger, Y. Y. Chen J. Fun. Anal. 1989 259 295

[10] S. J. Chapman Nucleation of superconductivity in decreasing fields European J. Appl. Math. 1994 449 468

[11] S. J. Chapman, S. D. Howison, J. R. Ockedon Macroscopic models of superconductivity SIAM Rev. 529 560

[12] Q. Du, M. D. Gunzburger, J. S. Peterson SIAM Rev. 1992 54 81

[13] M. Dutour J. Math. Phys. 2001 4915 4926

[14] M. Dutour. Bifurcation vers l’état d’Abrikosov et diagramme des phases. Thesis Orsay, http://www.arxiv.org/abs/math-ph/9912011.

[15] G. Eilenberger Z. Physik 1964 32 42

[16] S. Fournais, B. Helffer. Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77, Birkhäuser, 2010.

[17] S. Gustafson, I.M. Sigal Comm. Math. Phys. 2000 257 275

[18] S. Gustafson, I. M. Sigal. Mathematical Concepts of Quantum Mechanics. Springer, 2006.

[19] S. J. Gustafson, I. M. Sigal, T. Tzaneteas J. Math. Phys. 015217 2010

[20] A. Jaffe, C. Taubes. Vortices and Monopoles: Structure of Static Gauge Theories. Progress in Physics 2. Birkhäuser, Boston, Basel, Stuttgart, 1980.

[21] W.H. Kleiner, L. M. Roth, S. H. Autler Phys. Rev. 1964 A1226 A1227

[22] G. Lasher Phys. Rev. 1965 A523 A528

[23] S. Nonnenmacher, A. Voros J. Statist. Phys. 1998 431 518

[24] F. Odeh J. Math. Phys. 1967 2351 2356

[25] Yu. N. Ovchinnikov JETP. 1997 818 823

[26] J. Rubinstein. Six Lectures on Superconductivity. Boundaries, interfaces, and transitions (Banff, AB, 1995), 163–184, CRM Proc. Lecture Notes, 13, Amer. Math. Soc., Providence, RI, 1998.

[27] E. Sandier, S. Serfaty. Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and their Applications, vol.l 70, Birkhäuser, 2007.

[28] P. Takáč Z. Angew. Math. Mech. 2001 523 539

[29] T. Tzaneteas, I. M. Sigal Contemporary Mathematics 195 213 2011

Cité par Sources :