The Dynamical Impact of a Shortcut in Unidirectionally Coupled Rings of Oscillators
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 173-189.

Voir la notice de l'article provenant de la source EDP Sciences

We study the destabilization mechanism in a unidirectional ring of identical oscillators, perturbed by the introduction of a long-range connection. It is known that for a homogeneous, unidirectional ring of identical Stuart-Landau oscillators the trivial equilibrium undergoes a sequence of Hopf bifurcations eventually leading to the coexistence of multiple stable periodic states resembling the Eckhaus scenario. We show that this destabilization scenario persists under small non-local perturbations. In this case, the Eckhaus line is modulated according to certain resonance conditions. In the case when the shortcut is strong, we show that the coexisting periodic solutions split up into two groups. The first group consists of orbits which are unstable for all parameter values, while the other one shows the classical Eckhaus behavior.
DOI : 10.1051/mmnp/20138511

J.P. Pade 1 ; L. Lücken 1 ; S. Yanchuk 1

1 Humboldt-University of Berlin, Institute of Mathematics Unter den Linden 6, 10099 Berlin, Germany
@article{MMNP_2013_8_5_a10,
     author = {J.P. Pade and L. L\"ucken and S. Yanchuk},
     title = {The {Dynamical} {Impact} of a {Shortcut} in {Unidirectionally} {Coupled} {Rings} of {Oscillators}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {173--189},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138511/}
}
TY  - JOUR
AU  - J.P. Pade
AU  - L. Lücken
AU  - S. Yanchuk
TI  - The Dynamical Impact of a Shortcut in Unidirectionally Coupled Rings of Oscillators
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 173
EP  - 189
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138511/
DO  - 10.1051/mmnp/20138511
LA  - en
ID  - MMNP_2013_8_5_a10
ER  - 
%0 Journal Article
%A J.P. Pade
%A L. Lücken
%A S. Yanchuk
%T The Dynamical Impact of a Shortcut in Unidirectionally Coupled Rings of Oscillators
%J Mathematical modelling of natural phenomena
%D 2013
%P 173-189
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138511/
%R 10.1051/mmnp/20138511
%G en
%F MMNP_2013_8_5_a10
J.P. Pade; L. Lücken; S. Yanchuk. The Dynamical Impact of a Shortcut in Unidirectionally Coupled Rings of Oscillators. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 173-189. doi : 10.1051/mmnp/20138511. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138511/

[1] D. M. Abrams, S. H. Strogatz Phys. Rev. Lett. 2004 174102

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwanga Phys. Rep. 2006 175 308

[3] P. C. Bressloff, S. Coombes, B. De Souza Phys. Rev. Lett. 1997 2791 2794

[4] J.J. Collins, I. Stewart Biol. Cybern. 1994 95 103

[5] H. Daido Phys. Rev. Lett. 1997 1683 1686

[6] E. J. Doedel. AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Montreal, Canada, April 2006.

[7] W. Eckhaus. Studies in Non-Linear Stability Theory, vol. 6 of Springer Tracts in Natural Philosophy. Springer, New York, 1965.

[8] N. Fenichel Indiana Univ. Math. J. 1971 193 226

[9] Y. Horikawa, H. Kitajima Chaos 2012 033115

[10] Y. Horikawa Communications in Nonlinear Science and Numerical Simulation 2012 2791 2803

[11] A. Koseska, J. Kurths Chaos 045111 2010

[12] Y. Kuznetsov. Elements of Applied Bifurcation Theory. vol. 112 of Applied Mathematical Sciences. Springer-Verlag, 1995.

[13] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon Science 2002 824 827

[14] L. M. Pecora, T. L. Carroll Phys. Rev. Lett. 1998 2109 2112

[15] P. Perlikowski, S. Yanchuk, O. V. Popovych, P. A. Tass Phys. Rev. E 2010 036208

[16] P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski, P. Mosiolek, T. Kapitaniak Chaos 2010 013111

[17] O. V. Popovych, S. Yanchuk, P. A. Tass Phys. Rev. Lett. 2011 228102

[18] J. G. Restrepo, E. Ott, B. R. Hunt Phys. Rev. Lett. 2004 114101

[19] J. G. Restrepo, E. Ott, B. R. Hunt Phys. Rev. E 2004 066215

[20] N. Strelkowa, M. Barahona Chaos 2011 2011

[21] A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, I. Endo Phys. Rev. Lett. 2001 078102

[22] L. S. Tuckerman, D. Barkley Physica D 1990 57 86

[23] G. Van Der Sande, M. C. Soriano, I. Fischer, C. R. Mirasso Phys. Rev. E 2008 055202

[24] A. Vishwanathan, G. Bi, H.C. Zeringue Lab Chip 2011 1081 8

[25] I. Waller, R. Kapral Phys. Rev. A 1984 2047 2055

[26] S. Yanchuk, M. Wolfrum Phys. Rev. E 2008 026212

[27] W. Zou, M. Zhan SIAM J. Appl. Dyn. Syst. 2009 1324 1340

Cité par Sources :