Complex Dynamics in Predator-prey Models with Nonmonotonic Functional Response and Harvesting
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 95-118.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we study the complex dynamics of predator-prey systems with nonmonotonic functional response and harvesting. When the harvesting is constant-yield for prey, it is shown that various kinds of bifurcations, such as saddle-node bifurcation, degenerate Hopf bifurcation, and Bogdanov-Takens bifurcation, occur in the model as parameters vary. The existence of two limit cycles and a homoclinic loop is established by numerical simulations. When the harvesting is seasonal for both species, sufficient conditions for the existence of an asymptotically stable periodic solution and bifurcation of a stable periodic orbit into a stable invariant torus of the model are given. Numerical simulations are carried out to demonstrate the existence of bifurcation of a stable periodic orbit into an invariant torus and transition from invariant tori to periodic solutions, respectively, as the amplitude of seasonal harvesting increases.
DOI : 10.1051/mmnp/20138507

J. Huang 1 ; J. Chen 2 ; Y. Gong 1 ; W. Zhang 3

1 School of Mathematics and Statistics, Central China Normal University Wuhan, Hubei 430079, P. R. China
2 Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
3 School of Mathematics and Statistics, Northeast Normal University Changchun, Jilin 130024, P. R. China
@article{MMNP_2013_8_5_a6,
     author = {J. Huang and J. Chen and Y. Gong and W. Zhang},
     title = {Complex {Dynamics} in {Predator-prey} {Models} with {Nonmonotonic} {Functional} {Response} and {Harvesting}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {95--118},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138507/}
}
TY  - JOUR
AU  - J. Huang
AU  - J. Chen
AU  - Y. Gong
AU  - W. Zhang
TI  - Complex Dynamics in Predator-prey Models with Nonmonotonic Functional Response and Harvesting
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 95
EP  - 118
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138507/
DO  - 10.1051/mmnp/20138507
LA  - en
ID  - MMNP_2013_8_5_a6
ER  - 
%0 Journal Article
%A J. Huang
%A J. Chen
%A Y. Gong
%A W. Zhang
%T Complex Dynamics in Predator-prey Models with Nonmonotonic Functional Response and Harvesting
%J Mathematical modelling of natural phenomena
%D 2013
%P 95-118
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138507/
%R 10.1051/mmnp/20138507
%G en
%F MMNP_2013_8_5_a6
J. Huang; J. Chen; Y. Gong; W. Zhang. Complex Dynamics in Predator-prey Models with Nonmonotonic Functional Response and Harvesting. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 95-118. doi : 10.1051/mmnp/20138507. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138507/

[1] J. F. Andrews Biotechnol. Bioeng. 1968 707 723

[2] R. Bogdanov Selecta Math. Soviet. 1981 373 388

[3] R. Bogdanov Selecta Math. Soviet. 1981 389 421

[4] F. Brauer J. Theor. Biol. 1977 143 152

[5] F. Brauer, D. A Sánchez Natural Resource Modeling 2003 233 244

[6] J. B. Collings J. Math. Biol. 1997 149 168

[7] S.-N. Chow, J. K. Hale. Methods of Bifurcation Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1982.

[8] R. M. Etoua, C. Rousseau J. Differential Equations 2010 2316 2356

[9] M. W. Hirsch, S. Smale, R. L. Devaney. Differential Equations, Dynamical Systems and An Introduction to Chaos. Elsevier, California, 2004.

[10] E. Hammill, O. L. Petchey, B. R. Anholt The American Naturalist 2010 723 731

[11] Y. Lamontagne, C. Coutu, C. Rousseau J. Dynam. Differential Equations. 2008 535 571

[12] R. May, J. R. Beddington, C. W. Clark, S. J. Holt, R. M. Laws Science 1979 267 277

[13] L. Perko. Differential Equations and Dynamical Systems. Springer, New York, 1996.

[14] S. Ruan, D. Xiao SIAM J. Appl. Math. 2001 1445 1472

[15] F. Takens Comm. Math. Inst. Rijksuniversitat Utrecht. 1974 1 59

[16] R. J. Taylor. Predation. Chapman and Hall, New York, 1984.

[17] G. S. K. Wolkowicz SIAM J. Appl. Math. 1988 592 606

[18] D. Xiao, H. Zhu SIAM J. Appl. Math. 2006 802 819

[19] H. Zhu, S. A. Campbell, G. S. K. Wolkowicz SIAM J. Appl. Math. 2002 636 682

[20] Z. Zhang, T. Ding, W. Huang, Z. Dong. Qualitative Theory of Differential Equation. Transl. Math. Monogr. Vol. 101, Amer. Math. Soc. Providence, RI, 1992.

Cité par Sources :