Wave Trains Associated with a Cascade of Bifurcations of Space-Time Caustics over Elongated Underwater Banks
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 1-12.

Voir la notice de l'article provenant de la source EDP Sciences

We study the behavior of linear nonstationary shallow water waves generated by an instantaneous localized source as they propagate over and become trapped by elongated underwater banks or ridges. To find the solutions of the corresponding equations, we use an earlier-developed asymptotic approach based on a generalization of Maslov’s canonical operator, which provides a relatively simple and efficient analytic-numerical algorithm for the wave field computation. An analysis of simple examples (where the bank and source shapes are given by certain elementary functions) shows that the appearance and dynamics of trapped wave trains is closely related to a cascade of bifurcations of space-time caustics, the bifurcation parameter being the bank length-to-width ratio.
DOI : 10.1051/mmnp/20138501

S. Yu. Dobrokhotov 1, 2 ; D. A. Lozhnikov 1, 2 ; V. E. Nazaikinskii 1, 2

1 A. Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
2 Moscow Institute of Physics and Technology
@article{MMNP_2013_8_5_a0,
     author = {S. Yu. Dobrokhotov and D. A. Lozhnikov and V. E. Nazaikinskii},
     title = {Wave {Trains} {Associated} with a {Cascade} of {Bifurcations} of {Space-Time} {Caustics} over {Elongated} {Underwater} {Banks}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138501/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - D. A. Lozhnikov
AU  - V. E. Nazaikinskii
TI  - Wave Trains Associated with a Cascade of Bifurcations of Space-Time Caustics over Elongated Underwater Banks
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 1
EP  - 12
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138501/
DO  - 10.1051/mmnp/20138501
LA  - en
ID  - MMNP_2013_8_5_a0
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A D. A. Lozhnikov
%A V. E. Nazaikinskii
%T Wave Trains Associated with a Cascade of Bifurcations of Space-Time Caustics over Elongated Underwater Banks
%J Mathematical modelling of natural phenomena
%D 2013
%P 1-12
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138501/
%R 10.1051/mmnp/20138501
%G en
%F MMNP_2013_8_5_a0
S. Yu. Dobrokhotov; D. A. Lozhnikov; V. E. Nazaikinskii. Wave Trains Associated with a Cascade of Bifurcations of Space-Time Caustics over Elongated Underwater Banks. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 1-12. doi : 10.1051/mmnp/20138501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138501/

[1] V. Arnold, A. Varchenko, S. Gussein-Zade. Singularities of differentiable maps. Nauka, Moscow, 1984. (Russian)

[2] V. M. Babich, V. S. Buldyrev. Asymptotic methods in short wave diffraction problems. Nauka, Moscow, 1972. (Russian)

[3] M. V. Berry, D. H. J. Odell J. Phys. A: Math. Gen. 1999 3571 3582

[4] M. V. Berry, C. Upstill Prog. Opt. 1980 257 346

[5] S. Yu. Dobrokhotov Dokl. Akad. Nauk SSSR 1986 575 579

[6] S. Yu. Dobrokhotov, R. Nekrasov, B. Tirozzi J. Engng Math. 2011 225 242

[7] S. Dobrokhotov, M. Rouleux Asymptotic Analysis 2011 33 73

[8] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich Mat. Zametki 2010 942 945

[9] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, B. Tirozzi, T. Ya. Tudorovskiy Dokl. Ross. Akad. Nauk 2006 171 175

[10] S. Yu. Dobrokhotov, S. Ya Sekerzh-Zenkovich, B. Tirozzi, B. Volkov Russian J. Earth Sci. 1 12 2006

[11] S. Yu. Dobrokhotov, S. Ya Sekerzh-Zenkovich, B. Tirozzi, B. Volkov Fund. Appl. Geophysics 2009 15 29

[12] S. Dobrokhotov, A. Shafarevich, B. Tirozzi Russian J. Math. Phys. 2008 192 221

[13] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas Russian J. Math. Phys. 2009 228 245

[14] S. Yu. Dobrokhotov, P. N. Zhevandrov Funktsional. Anal. i Prilozhen. 1985 43 54

[15] S. F. Dotsenko, B. Yu. Sergievskii, L. V. Cherkasov Tsunami Research 1986 7 14

[16] J. J. Duistermaat Comm. Pure Appl. Math. 1974 207 281

[17] M. V. Fedoryuk. Mountain pass method. Moscow, Nauka, 1977.

[18] R. M. Garipov Dokl. Akad. Nauk SSSR 1965 547 550

[19] D. A. Indeytsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova. Trapped linear waves. St.-Petersburg State University Press, St.-Petersburg, 2007. (Russian)

[20] J. B. Keller J. Fluid Mech. 1958 607 614

[21] P. H. Le Blond, L. A. Mysak. Waves in the ocean. Elsevier, Amsterdam, 1978.

[22] D. A. Lozhnikov Russian J. Math. Phys. 1958 607 614

[23] V. S. Matveev Mat. Zametki 1958 607 614

[24] C. C. Mei. The applied dynamics of ocean surface waves. World Scientific, Singapore, 1989.

[25] E. N. Pelinovskii. Hydrodynamics of tsunami waves. Nizhni Novgorod, 1996. (Russian)

[26] S. Ya. Sekerzh-Zenkovich Russian J. Math. Phys. 1958 607 614

[27] R. Thom. Structural stability and morphogenesis. Advanced Books Classics. Benjamin, Reading, 1975.

[28] B. R. Vainberg. Asymptotic methods in equations of mathematical physics. Moscow University, Moscow, 1982. English transl., Gordon and Breach, New York, 1989.

[29] S. Wang. The Propagation of the Leading Wave. ASCE Specialty Conference on Coastal Hydrodynamics, University of Delaware, June 29–July 1 (1987), 657–670.

Cité par Sources :