Homogenization Approach to Water Transport in Plant Tissues with Periodic Microstructures
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 80-111.

Voir la notice de l'article provenant de la source EDP Sciences

Water flow in plant tissues takes place in two different physical domains separated by semipermeable membranes: cell insides and cell walls. The assembly of all cell insides and cell walls are termed symplast and apoplast, respectively. Water transport is pressure driven in both, where osmosis plays an essential role in membrane crossing. In this paper, a microscopic model of water flow and transport of an osmotically active solute in a plant tissue is considered. The model is posed on the scale of a single cell and the tissue is assumed to be composed of periodically distributed cells. The flow in the symplast can be regarded as a viscous Stokes flow, while Darcy’s law applies in the porous apoplast. Transmission conditions at the interface (semipermeable membrane) are obtained by balancing the mass fluxes through the interface and by describing the protein mediated transport as a surface reaction. Applying homogenization techniques, macroscopic equations for water and solute transport in a plant tissue are derived. The macroscopic problem is given by a Darcy law with a force term proportional to the difference in concentrations of the osmotically active solute in the symplast and apoplast; i.e. the flow is also driven by the local concentration difference and its direction can be different than the one prescribed by the pressure gradient.
DOI : 10.1051/mmnp/20138406

A. Chavarría-Krauser 1 ; M. Ptashnyk 2, 3

1 Center for Modelling and Simulation in the Biosciences & Interdisciplinary Center for Scientific Computing, Universität Heidelberg, INF 368, 69120 Heidelberg, Germany
2 Department of Mathematics, University of Dundee, Old Hawkhill, Dundee DD1 4HN Scotland, UK
3 Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics Naukova 3b, Lviv, Ukraine
@article{MMNP_2013_8_4_a5,
     author = {A. Chavarr{\'\i}a-Krauser and M. Ptashnyk},
     title = {Homogenization {Approach} to {Water} {Transport} in {Plant} {Tissues} with {Periodic} {Microstructures}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {80--111},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2013},
     doi = {10.1051/mmnp/20138406},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138406/}
}
TY  - JOUR
AU  - A. Chavarría-Krauser
AU  - M. Ptashnyk
TI  - Homogenization Approach to Water Transport in Plant Tissues with Periodic Microstructures
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 80
EP  - 111
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138406/
DO  - 10.1051/mmnp/20138406
LA  - en
ID  - MMNP_2013_8_4_a5
ER  - 
%0 Journal Article
%A A. Chavarría-Krauser
%A M. Ptashnyk
%T Homogenization Approach to Water Transport in Plant Tissues with Periodic Microstructures
%J Mathematical modelling of natural phenomena
%D 2013
%P 80-111
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138406/
%R 10.1051/mmnp/20138406
%G en
%F MMNP_2013_8_4_a5
A. Chavarría-Krauser; M. Ptashnyk. Homogenization Approach to Water Transport in Plant Tissues with Periodic Microstructures. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 80-111. doi : 10.1051/mmnp/20138406. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138406/

[1] E. Acerbi, V. Chiado Piat, G. Dal Maso, D. Percivale Nonlin. Anal. Theory, Methods, Applic. 1992 481 496

[2] G. Allaire SIAM J. Math. Anal. 1992 1482 1518

[3] G. Allaire Asymptotic Anal. 1989 203 222

[4] T. Arbogast, H. Lehr Computat. Geosci. 2006 291 302

[5] V. Calvez, J.G. Houot, N. Meunier, A. Raoult, G. Rusnakova. Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc., (2010), 1–18.

[6] A. Chavarría-Krauser, W. Jäger Comput. Visual. Sci. 2010 121 128

[7] A. Chavarría-Krauser, M. Ptashnyk Nonlinear Anal. Real World Applic. 2010 4524 4532

[8] D. Cioranescu, J. Saint Jean Paulin. Homogenization of reticulated structures. Springer, New York, 1999.

[9] D. Cioranescu, P. Donato. An introduction to Homogenization. Oxfor University Press, New York, 1999.

[10] D. Cioranescu, P. Donato, R. Zaki Port. Math. 2006 467 496

[11] J. Claus, A. Chavarría-Krauser PLoS ONE 2012 e37193

[12] J. Claus, A. Bohmann, A.Chavarría-Krauser. Zinc Uptake and Radial Transport in Roots of Arabidopsis thaliana: A Modelling Approach to Understand Accumulation. Ann. Bot.-London, doi: 10.1093/aob/mcs263.

[13] J. Claus, A. Chavarría-Krauser Plant Sig. Behav. 2013

[14] K. Esau. Anatomy of seed plant. Wiley, 1977.

[15] J. Galvis, M. Sarkis Elect. Trans. Numer. Ana. 2007 350 384

[16] V. Giovangigli. Multicomponent flow modeling. Birkhäuser, 1999.

[17] V. Girault, P.-A. Raviart. Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer, Berlin Heidelberg, 1986.

[18] T.H. Van Den Honert Discuss. Faraday Soc. 1948 146 153

[19] U. Hornung. Homogenization and porous media. Springer-Verlag, 1997.

[20] H. Javot, C. Maurel Ann. Bot.-London 2002 301 313

[21] W. Jäger, A. Mikelic SIAM J. Appl.Math. 2000 1111 1127

[22] O.A. Ladyzenskaja, V.A Solonnikov, N.N. Uralceva. Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, 1968.

[23] L.D. Landau, E.M. Lifschitz. Statistische Physik. Akademie Verlag, 1987.

[24] L.D. Landau, E.M. Lifschitz. Hydrodynamik. Akademie Verlag, 1991.

[25] W.J. Layton, F. Schieweck, I. Yotov SIAM J. Numer. Anal. 2003 2195 2218

[26] R. Lipton, M. Avellaneda Proc. Royal Soc. Edinburgh 1990 71 79

[27] A. Marciniak-Czochra, M. Ptashnyk SIAM J. Math. Anal. 2008 215 237

[28] M. Neuss-Radu C. R. Acad. Sci. Paris 1996 899 904

[29] G. Nguetseng SIAM J. Math. Anal. 1989 608 623

[30] X.Y. Ni, T. Drengstig, P. Ruoff Biophys. J. 2009 1244 1253

[31] P. Nobel. Physicochemical Environmental Plant Physiology. Academic Press, 1999.

[32] M. Prosi, P. Zunino, K. Perktold, A. Quarteroni J. Biomech. 2005 903 917

[33] M. Ptashnyk Nonlinear Anal. Real World Applic. 2010 4586 4596

[34] A. Quarteroni, M. Discacciati Rev. Mat. Comput. 2009 315 426

[35] E. Steudle, C.A. Peterson J. Exp. Bot. 1998 775 788

[36] E. Steudle Plant Soil 2000 45 56

[37] N. Sun, N.B. Wood, A.D. Hughes, S.A.M. Thom, X.Y. Xu Am. J. Physiol. Heart. Circ. Physiol. 2007 H3148 H3157

[38] L. Tartar. Incompressible fluid flow in a porous medium - convergence of the homogenization process. Appendix in Lecture Notes in Physics 127, Springer, Berlin, 1980.

[39] R. Temam. Navier-Stokes equations. North-Holland, Amsterdam, 1978.

[40] M. T. Tyree J. Exp. Bot. 1969 341 349

[41] M. T. Tyree J. Exp. Bot 1997 1753 1765

[42] A. Vailati, M. Giglio Phys. Rev. E 1998 4361 4371

[43] J. Vos, J.B. Evers, G.H. Buck-Sorlin, B. Andrieu, M. Chelle, P.H.B. De Visser J. Exp. Botany 2010 2101 2115

Cité par Sources :