Deformable Cell Model and its Application to Growth of Plant Meristem
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 62-79.

Voir la notice de l'article provenant de la source EDP Sciences

Deformable cell model is developed to study pattern formation and to simulate plant tissue growth. Each cell represents a polygon with a number of vertices connected by springs. Some cells in the tissue can grow and divide, other cells are differentiated and do not grow or divide but remain deformable. The model is used to investigate formation of self-similar structures which reproduce the same cell organization during their growth. In numerical experiments we observed that self-similar solutions can exist for a rather precise choice of plant structure and mechanical properties of cell walls. We test the model for simulation of apical meristems functioning which represent self-similar cell structures in plants. At the next stage of modelling, auxin distribution is introduced by means of diffusion and polar transport mechanisms. The existence of steady auxin distribution in a growing root is investigated. Single as well as multiple auxin maxima have been observed in model solutions.
DOI : 10.1051/mmnp/20138405

N. Bessonov 1 ; V. Mironova 2 ; V. Volpert 3, 4

1 Institute of Mechanical Engineering Problems, 199178 Saint Petersburg, Russia
2 Institute of cytology and genetics SB RAS, Novosibirsk, Russia
3 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
4 Department of Mathematics, Mechanics and Computer Science Southern Federal University, Rostov-on-Don, Russia
@article{MMNP_2013_8_4_a4,
     author = {N. Bessonov and V. Mironova and V. Volpert},
     title = {Deformable {Cell} {Model} and its {Application} to {Growth} of {Plant} {Meristem}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {62--79},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2013},
     doi = {10.1051/mmnp/20138405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138405/}
}
TY  - JOUR
AU  - N. Bessonov
AU  - V. Mironova
AU  - V. Volpert
TI  - Deformable Cell Model and its Application to Growth of Plant Meristem
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 62
EP  - 79
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138405/
DO  - 10.1051/mmnp/20138405
LA  - en
ID  - MMNP_2013_8_4_a4
ER  - 
%0 Journal Article
%A N. Bessonov
%A V. Mironova
%A V. Volpert
%T Deformable Cell Model and its Application to Growth of Plant Meristem
%J Mathematical modelling of natural phenomena
%D 2013
%P 62-79
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138405/
%R 10.1051/mmnp/20138405
%G en
%F MMNP_2013_8_4_a4
N. Bessonov; V. Mironova; V. Volpert. Deformable Cell Model and its Application to Growth of Plant Meristem. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 62-79. doi : 10.1051/mmnp/20138405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138405/

[1] L.R. Band, D.M. Wells, A. Larrieu, J. Sun, A.M. Middleton PNAS 2012 4668 4473

[2] E.M. Bayer, R.S. Smith, T. Mandel, N. Nakayama, M. Sauer, P. Prusinkiewicz, C. Kuhlemeier Genes Dev. 2009 373 384

[3] N. Bessonov, V. Volpert. Dynamic models of plant growth. Publibook, Paris, 2006.

[4] N. Bessonov, N. Morozova, V. Volpert Bull. Math. Biology 2008 868 893

[5] G.D. Bilsborough, A. Runions, M. Barkoulas, H.W. Jenkins, A. Hasson, C. Galinha, P. Laufs, A. Hay, P. Prusinkiewicz, M. Tsiantis PNAS 2011 3424 3429

[6] I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Paponov, J. Friml, R. Heidstra, M. Aida, K. Palme, B. Scheres Nature 2005 39 44

[7] V. Brukhin, N. Morozova Math. Model. Nat. Phenom. 2011 1 53

[8] G. Brunoud, D.M. Wells, M. Oliva, A. Larrieu, V. Mirabet, A.H. Burrow, T. Beeckman, S. Kepinski, J. Traas, M.J. Bennett, T. Vernoux Nature 2012 103 106

[9] I. De Smet, T. Tetsumura, B. De Rybel, N.F. Frey, L. Laplaze, I. Casimiro, R. Swarup, M. Naudts, S. Vanneste, D. Audenaert, D. Inze, M.J. Bennett, T. Beeckman Development 2007 681 690

[10] L. Dolan, K. Janmaat, V. Willemsen, P. Linstead, S. Poethig, K. Roberts, B. Scheres Development 1993 71 84

[11] L. Forest, J. Demongeot Bull. Math. Biol. 2006 753 784

[12] M.G. Heisler, C. Ohno, P. Das, P. Sieber, G.V. Reddy, J.A. Long, E.M. Meyerowitz Curr Biol. 2005 1899 1911

[13] K. Jiang, L.J. Feldman Ann. Rev. Cell Dev. Biol. 2005 485 509

[14] V.A. Grieneisen, J. Xu, A.F. Marle, P. Hogeweg, B. Scheres Nature 2007 1008 1013

[15] H. Jonsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, E. Mjolsness PNAS 2006 1633 1638

[16] E.M. Kramer J. Theor. Biol. 2002 147 158

[17] P. Krupinski, H. Jonsson Cold Spring Harb Perspect Biol. 2010

[18] M. Lucas, L. Laplaze, M.J. Bennett Plant Cell Environ. 2011 535 353

[19] R.M. Merks, M. Guravage, D. Inze, G.T. Beemster Plant Physiol. 2011 656 666

[20] V.V. Mironova, N.A. Omelyanchuk, E.S. Novoselova, A.V. Doroshkov, F.V. Kazantsev, A.V. Kochetov, N.A. Kolchanov, E. Mjolsness, V.A. Likhoshvai Ann. Bot. 2012 349 360

[21] V.V. Mironova, N.A. Omelyanchuk, G. Yosiphon, S.I. Fadeev, N.A. Kolchanov, E. Mjolsness, V.A. Likhoshvai BMC Syst. Biol. 2010 98

[22] M.A. Moreno-Risueno, J.M. Van Norman, A. Moreno, J. Zhang, S.E. Ahnert, P.N. Benfey Science 2010 1306 1311

[23] M. Sauer, J. Balla, C. Luschnig, J. Wisniewska, V. Reinohl, J. Friml, E. Benkova Genes & Dev. 2006 2902 2911

[24] P. Sahlin, B. Soderberg, H. Jonsson Regulated transport as a mechanism for pattern generation: capabilities for phyllotaxis and beyond J. Theor. Biol. 2009 60 70

[25] J. Szymanowska-Pulka, I. Potocka, J. Karczewski, K. Jiang, J. Nakielski, L.J. Feldman Ann. Bot. 2012 491 501

[26] J. Szymanowska-Pulka J. Theor. Biol. 2007 650 656

[27] A. Vieten, S. Vanneste, J. Wisniewska, E. Benkova, R. Benjamins, T. Beeckman, C. Luschnig, J. Friml Development 2005 4521 4531

[28] L. Williams, J.C. Fletcher Curr. Opin. Plant Biol. 2005 582 586

Cité par Sources :