Finite Element Computation of KPP Front Speeds in 3D Cellular and ABC Flows
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 182-197.

Voir la notice de l'article provenant de la source EDP Sciences

We carried out a computational study of propagation speeds of reaction-diffusion-advection fronts in three dimensional (3D) cellular and Arnold-Beltrami-Childress (ABC) flows with Kolmogorov-Petrovsky-Piskunov(KPP) nonlinearity. The variational principle of front speeds reduces the problem to a principal eigenvalue calculation. An adaptive streamline diffusion finite element method is used in the advection dominated regime. Numerical results showed that the front speeds are enhanced in cellular flows according to sublinear power law O(δp), p ≈ 0.13, δ the flow intensity. In ABC flows however, the enhancement is O(δ) which can be attributed to the presence of principal vortex tubes in the streamlines. Poincaré sections are used to visualize and quantify the chaotic fractions of ABC flows in the phase space. The effect of chaotic streamlines of ABC flows on front speeds is studied by varying the three parameters (a,b,c) of the ABC flows. Speed enhancement along x direction is reduced as b (the parameter controling the flow variation along x) increases at fixed (a,c) > 0, more rapidly as the corresponding ABC streamlines become more chaotic.
DOI : 10.1051/mmnp/20138311

L. Shen 1 ; J. Xin 2 ; A. Zhou 3

1 School of Mathematics, Capital Normal University, Beijing 100048, China
2 Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
3 LSEC,Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
@article{MMNP_2013_8_3_a10,
     author = {L. Shen and J. Xin and A. Zhou},
     title = {Finite {Element} {Computation} of {KPP} {Front} {Speeds} in {3D} {Cellular} and {ABC} {Flows}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {182--197},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138311/}
}
TY  - JOUR
AU  - L. Shen
AU  - J. Xin
AU  - A. Zhou
TI  - Finite Element Computation of KPP Front Speeds in 3D Cellular and ABC Flows
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 182
EP  - 197
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138311/
DO  - 10.1051/mmnp/20138311
LA  - en
ID  - MMNP_2013_8_3_a10
ER  - 
%0 Journal Article
%A L. Shen
%A J. Xin
%A A. Zhou
%T Finite Element Computation of KPP Front Speeds in 3D Cellular and ABC Flows
%J Mathematical modelling of natural phenomena
%D 2013
%P 182-197
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138311/
%R 10.1051/mmnp/20138311
%G en
%F MMNP_2013_8_3_a10
L. Shen; J. Xin; A. Zhou. Finite Element Computation of KPP Front Speeds in 3D Cellular and ABC Flows. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 182-197. doi : 10.1051/mmnp/20138311. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138311/

[1] M. Abel, M. Cencini, D. Vergni, A. Vulpiani Chaos 2002 481 488

[2] D.N. Arnold, A. Mukherjee, L. Pouly SIAM J. Sci. Comput. 2000 431 448

[3] B. Audoly, H. Berestycki, Y. Pomeau C. R. Acad. Sci. Paris 2000 255 262

[4] I. Babuška, J.E. Osborn Eigenvalue problems. in: Handbook of Numerical Analysis 1991 641 787

[5] I. Babuška, M. Vogelius Numer. Math. 1984 75 102

[6] C. Beattie Math. Comput. 2000 1400 1434

[7] H. Berestycki, F. Hamel Comm. Pure Appl. Math. 2002 949 1032

[8] H. Berestycki, F. Hamel, N. Nadirashvili Comm. Math. Physics 2005 451 480

[9] L. Biferale, A. Crisanti, M. Vergassola, A. Vulpiani Phys. Fluids 1995 2725 2734

[10] A. Bourlioux, B. Khouider Multiscale Model. Simul. 2007 287 307

[11] J. Brandts, M. Krizek IMA J. Numer. Anal. 2003 1 17

[12] S. Childress, A.M. Soward J. Fluid Mech 1989 99 133

[13] P. Clavin, F. Williams J. Fluid Mech. 1979 598 604

[14] P. Constantin, A. Kiselev, A. Oberman, L. Ryzhik Arch. Rat. Mech. Anal. 2000 53 91

[15] R Codina Comput. Methods Appl. Mech. Engrg. 1998 185 210

[16] X. Dai, J. Xu, A. Zhou Convergence and optimal complexity of adaptive finite element eigenvalue computations Numer. Math. 2008 313 355

[17] T. Dombre, U. Frisch, J.M. Greene, M. Hènon, A. Mehr, A.M. Soward J. Fluid Mech. 1986 353 391

[18] E. Dormy, A. Soward, eds, “Mathematical Aspects of Natural Dynamics”, the Fluid Mech. of Astrophysics and Geophysics, Vol. 13, Grenoble Science and CRC Press, 2007.

[19] K. Eriksson, C. Johnson Math. Comput. 1993 167 188

[20] A. Fannjiang, G. Papanicolaou SIAM J. Appl. Math. 1992 333 408

[21] S. Friedlander, A. Gilbert, M. Vishik Geophys. Astrophys. Fluid Dynamics 1993 97 107

[22] S. Friedlander, M. Vishik Chaos 1991 198 205

[23] T.J.R. Hughes, A.N. Brooks. A multidimensional upwind scheme with no crosswind diffusion. in: Finite Element Methods for Convection Dominated Flows (Hughes, T.J.R., ed.), New York, ASME, 1979.

[24] C. Johnson, U. Nävert, J. Pitkäranta Comput. Methods Appl. Mech. Engrg. 1984 285 312

[25] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method, Combridge Univ. Press, Cambridge, 1987.

[26] A. Majda, P. Souganidis Comm. Pure Appl. Math. 1998 1337 1348

[27] D. Mao, L. Shen, A. Zhou Adv. Comput. Math. 2006 135 160

[28] U. Nävert. A finite element method for convection-diffsion problems, PhD thesis, Chalmers University of Technology Göteberg, 1982.

[29] J. Nolen, J. Xin Physica D 2008 3172 3177

[30] A. Novikov, L. Ryzhik Arch. Ration. Mech. Anal. 2007 23 48

[31] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.

[32] M. Proctor, A. Gilbert, eds, “Lectures on Solar and Planetary Dynamos”, Publications of the Newton Institute, Cambridge Univ Press, 1994.

[33] P. Ronney. Some open issues in premixed turbulent combustion. in: Modeling in Combustion Science (J. D. Buckmaster and T. Takeno, Eds.), Lecture Notes in Physics, Vol. 449, Springer-Verlag, Berlin, pp. 3–22, 1995.

[34] H-G Roos, M. Stynes, L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer series in computational mathematics, 24, second edition, 2008.

[35] L. Ryzhik, A. Zlatos Comm. Math. Sci. 2007 575 593

[36] L. Shen, J. Xin, A. Zhou Multiscale Model. Simul. 2008 1029 1041

[37] L. Shen, J. Xin, A. Zhou J. Sci. Comput. 2013 455 470

[38] L. Shen, A. Zhou SIAM J. Sci. Comput. 2006 321 338

[39] G. Sivashinsky Combust. Sci. Tech. 1988 77 96

[40] R. Verfüth. A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996.

[41] R. Verfüth SIAM J. Numer. Anal. 2005 1766 1782

[42] F. Williams, Turbulent combustion. in: The Mathematics of Combustion (J. Buckmaster, ed.), SIAM, Philadelphia, pp. 97–131, 1985.

[43] J. Xin. An Introduction to Fronts in Random Media, Surveys and Tutorials in the Applied Mathematical Sciences, Vol. 5, Springer, 2009.

[44] J. Xin, Y. Yu. Analysis and comparison of large time front speeds in turbulent combustion models. http://arxiv.org/submit/255369, 2011.

[45] V. Yakhot Comb. Sci. Tech. 1988 191 214

[46] A. Zlatos Arch Rat. Mech. Anal 2010 441 453

[47] A. Zlatos Ann. Inst. H. Poincaré, Anal. Non Linaire 2011 711 726

Cité par Sources :