Bifurcation Approach to Analysis of Travelling Waves in Some Taxis–Cross-Diffusion Models
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 133-153.

Voir la notice de l'article provenant de la source EDP Sciences

An overview of recently obtained authors’ results on traveling wave solutions of some classes of PDEs is presented. The main aim is to describe all possible travelling wave solutions of the equations. The analysis was conducted using the methods of qualitative and bifurcation analysis in order to study the phase-parameter space of the corresponding wave systems of ODEs. In the first part we analyze the wave dynamic modes of populations described by the “growth - taxis - diffusion" polynomial models. It is shown that “suitable" nonlinear taxis can affect the wave front sets and generate non-monotone waves, such as trains and pulses, which represent the exact solutions of the model system. Parametric critical points whose neighborhood displays the full spectrum of possible model wave regimes are identified; the wave mode systematization is given in the form of bifurcation diagrams. In the second part we study a modified version of the FitzHugh-Nagumo equations, which model the spatial propagation of neuron firing. We assume that this propagation is (at least, partially) caused by the cross-diffusion connection between the potential and recovery variables. We show that the cross-diffusion version of the model, besides giving rise to the typical fast travelling wave solution exhibited in the original “diffusion" FitzHugh-Nagumo equations, additionally gives rise to a slow traveling wave solution. We analyze all possible traveling wave solutions of the model and show that there exists a threshold of the cross-diffusion coefficient (for a given speed of propagation), which bounds the area where “normal" impulse propagation is possible. In the third part we describe all possible wave solutions for a class of PDEs with cross-diffusion, which fall in a general class of the classical Keller-Segel models describing chemotaxis. Conditions for existence of front-impulse, impulse-front, and front-front traveling wave solutions are formulated. In particular, we show that a non-isolated singular point in the ODE wave system implies existence of free-boundary fronts.
DOI : 10.1051/mmnp/20138309

F. Berezovskaya 1 ; G. Karev 2

1 Howard University, Washington, DC 20059, USA
2 National Center for Biotechnology Information, Bethesda, MD 20894, USA
@article{MMNP_2013_8_3_a8,
     author = {F. Berezovskaya and G. Karev},
     title = {Bifurcation {Approach} to {Analysis} of {Travelling} {Waves} in {Some} {Taxis{\textendash}Cross-Diffusion} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {133--153},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138309/}
}
TY  - JOUR
AU  - F. Berezovskaya
AU  - G. Karev
TI  - Bifurcation Approach to Analysis of Travelling Waves in Some Taxis–Cross-Diffusion Models
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 133
EP  - 153
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138309/
DO  - 10.1051/mmnp/20138309
LA  - en
ID  - MMNP_2013_8_3_a8
ER  - 
%0 Journal Article
%A F. Berezovskaya
%A G. Karev
%T Bifurcation Approach to Analysis of Travelling Waves in Some Taxis–Cross-Diffusion Models
%J Mathematical modelling of natural phenomena
%D 2013
%P 133-153
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138309/
%R 10.1051/mmnp/20138309
%G en
%F MMNP_2013_8_3_a8
F. Berezovskaya; G. Karev. Bifurcation Approach to Analysis of Travelling Waves in Some Taxis–Cross-Diffusion Models. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 133-153. doi : 10.1051/mmnp/20138309. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138309/

[1] N. Tinbergen. Social Behavior in Animals, with Special Reference to Vertebrates. Chapman and Hall, London, 1990.

[2] C.S. Patlak Bull. Math. Biol.. 1953 311 338

[3] J. Adler J. Science 1966 708 716

[4] A. Okubo. Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, 1980.

[5] J.D. Murray. Mathematical Biology. Springer, Berlin, 2005.

[6] E.F. Keller, L.A.J. Segel J. Theor. Biol. 1971 225 234

[7] N. Kopell, L.N. Howard Studies in Appl. Math. 1973 291 328

[8] A.S. Isaev et al. Dynamics of Forest Insect Populations. Nauka, Novosibirsk, 1984 (in Russian).

[9] F.S. Berezovskaya, A.S. Isaev, G.P. Karev, R.G. Khlebopros Doklady Biological Sci. 1999 148 151

[10] H.A. Levine, B.D. Sleeman Siam J. Appl. Math. 1997 683 730

[11] G.R. Ivanitsky, A.B. Medvinsky, M.A. Tsyganov Sov. Phys. Usp. 1991 289 316

[12] H.G. Othmer, A. Stevens Siam J. Appl. Math. 1997 1044 1081

[13] T. Nagai, T. Ikeda J. Math. Biol. 1991 169 184

[14] E.O. Budrene, H.C. Berg Nature 1991 630 633

[15] Yu.M. Svirezhev. Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology. Nauka, Moscow, 1987 (in Russian).

[16] A.A. Samarskii, A.P. Mikhailov. Principles of Mathematical Modeling: Ideas, Methods, Examples. Taylor Francis, London, 2002.

[17] V. Volpert, S.V. Petrovskii Physics of life Reviews 2009 267 310

[18] R.A. Fisher Ann Eugenics 1937 353 369

[19] A. Kolmogoroff, I. Petrovsky, N. Piskunoff Moscow. Univ. Bull. Math. 1937 1 25

[20] A.M. Turing Phil. Trans. Roy. Soc. London B 1952 37 72

[21] R. FitzHugh, Mathematical Models of Excitation and Propagation in Nerve, in: Biological Engineering (ed. H. P. Schwan), McGraw-Hill, 1969.

[22] Yu.M. Romanovsky, N.S. Stepanova, D.S. Chernavsky. Mathematical Modeling in Biophysics. Nauka, Moscow, 1975 (in Russian).

[23] K. Lika, T.G. Hallam J. Math. Biol. 1999 346 358

[24] D.L. Feltham, M.A.J. Chaplain Appl. Math. Lett. 2000 67 73

[25] N. Shigesada, K. Kawasaki, Ei. Teramoto J. Theor. Biol. 1979 83 99

[26] M. Ieda, M. Mimira, H. Ninomia J. Math. Biol. 2006 617 641

[27] A. Monk, H.G. Othmer Phil. Trans. R. Soc. London 1989 185 224

[28] A. Stevens J. Biol. Syst. 1995 1059 1068

[29] R. Erban, H.G. Othmer J. Math. Biol. 2007 847 885

[30] Yu.A. Kuznetsov, M.Ya. Antonovsky, V.N. Biktashev, E.A. Aponina J. Math. Biol. 1994 219 232

[31] J.A. Sherratt Siam J. Appl. Math. 1999 392 407

[32] M.A. Tsyganov, V.N. Biktashev, J. Brindley, A.V. Holden, G.R. Ivanitsky Physics-Uspehi 2007 275 300

[33] F.S. Berezovskaya, G.P. Karev Biofizika 2000 751 756

[34] W.-M. Ni Not. Am. Math. Soc. 1998 9 18

[35] A.I. Volpert, V.A. Volpert, V.A. Volpert. Travelling Wave Solutions of Parabolic Systems. AMS, Providence, RI, 1994.

[36] D. Henry. Geometric theory of Semilinear Parabolic equations. Springer-Verlag, New York. 1981.

[37] F.S. Berezovskaya, G.P. Karev Physics-Uspekhi 1999 917 929

[38] F.S. Berezovskaya, A.S. Novozhilov, G.P. Karev Nonlinear Anal.: Real World Appl. 2008 1866 1881

[39] F. Berezovskaya, E. Camacho, S. Wirkus, G. Karev Math. Biol.&Eng. 2008 239 260

[40] F.S. Berezovskaya, A.S. Novozhilov, G.P. Karev Neural, Parallel and Scientific Computations 2007 561 570

[41] F.S. Berezovskaya, G.P. Karev, R.G. Khlebopros Problems of Ecological Monitoring and modeling of ecosystems 2000 17 33

[42] A.D. Bazykin. Non-linear dynamics of interacting populations. World Scientific, Singapore, 1999.

[43] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier. Qualitative Theory of Second-order Dynamic Systems. Wiley, New-York, 1973.

[44] V.I. Arnold. Geometrical methods in the theory of ODE. Springer-Verlag, 1983.

[45] J. Guckenheimer, P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, 1983.

[46] R.I. Bogdanov Selecta Math. Soviet. 1976 373 388

[47] F. Dumortier, R. Rossarie, J. Sotomayor Bifurcations of planar vector fields Lect. Notes in Mathematics 1991 1 164

[48] D. Turaev Mathematics survey 1985 203 204

[49] G. Dangelmayr, J. Guckenheimer Arch. Ration. Mech. 1987 321 352

[50] Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, Berlin, 2004.

[51] A. Khibnik, B. Krauskopf, C. Rousseau Nonlinearity 1998 1505 1519

[52] A.D. Bazykin, Yu.A. Kuznetsov, A.I. Khibnik. Portraits of Bifurcations. Znanie, Moscow, 1989 (in Russian).

[53] J.E. Marsden, M. McCracken. The Hopf Bifurcation and Its Applications. Springer-Verlag, New York, 1976.

[54] P.K. Maini, J.D. Murray, G.F. Oster Lecture Notes - Mathematics 1985

[55] J.H.E. Cartwright, E. Hermandez-Garcia, O. Piro Phys. Rev. Lett. 1997 527 530

[56] Ya.B. Zel’dovich, G. Barenblatt, V. Librovich, G. Makhviladze, The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York, 1985.

[57] R. Fitzhugh Biophysical Journal 1961 445 466

[58] A.L. Hodgkin, A.F. Huxley J. Physiol. 1952 500 544

[59] L. Sherwood. Human Physiology: From Cells to Systems, 4th edition. Brooks and Cole Publishers, 2001.

[60] E.P. Volokitin, S.A. Treskov Mathematical modeling 1994 65 78

[61] J. Nagumo, S. Arimoto, S. Yoshisawa Proc. IRE 1962 2061 2070

[62] S. Hastings Quart. J. Math. (Oxford) 1976 123 134

[63] J. Evans, N. Fenichel, J. Feroe SIAM J. Appl. Math. 1982 219 234

[64] B. Deng SIAM J. Math. Anal. 1991 1631 1650

[65] Yu. Kuznetsov, A. Panfilov. Stochastic waves in the FitzHugh-Nagumo system. Preprint of Research Computer Center, Academy of Sci. USSR, 1981 (in Russian).

[66] B. Sandstede SIAM J. Math. Anal. 1998 183 207

[67] F. Sanchez-Garduno, P.K. Maini J. Math. Biol. 1997 713 728

[68] D.W. Verzi, M.B. Rheuben, S.M. Baer J. Neurophysiol. 2005 2073 2089

[69] E.F. Keller, L.A. Segel J. Theor. Biol. 1971 235 248

[70] F.S. Berezovskaya, A.S. Novozhilov, G.P. Karev Math. Biosci. 2007 270 299

[71] S. Gueron, N. Liron J. Math. Biol. 1989 595 608

Cité par Sources :