Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20138308,
author = {Y. Li and Y. Wu},
title = {Existence and {Stability} of {Travelling} {Front} {Solutions} for {General} {Auto-catalytic} {Chemical} {Reaction} {Systems}},
journal = {Mathematical modelling of natural phenomena},
pages = {104--132},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2013},
doi = {10.1051/mmnp/20138308},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138308/}
}
TY - JOUR AU - Y. Li AU - Y. Wu TI - Existence and Stability of Travelling Front Solutions for General Auto-catalytic Chemical Reaction Systems JO - Mathematical modelling of natural phenomena PY - 2013 SP - 104 EP - 132 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138308/ DO - 10.1051/mmnp/20138308 LA - en ID - 10_1051_mmnp_20138308 ER -
%0 Journal Article %A Y. Li %A Y. Wu %T Existence and Stability of Travelling Front Solutions for General Auto-catalytic Chemical Reaction Systems %J Mathematical modelling of natural phenomena %D 2013 %P 104-132 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138308/ %R 10.1051/mmnp/20138308 %G en %F 10_1051_mmnp_20138308
Y. Li; Y. Wu. Existence and Stability of Travelling Front Solutions for General Auto-catalytic Chemical Reaction Systems. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 104-132. doi: 10.1051/mmnp/20138308
[1] , Proc. Royal Soc. Edin. A 2007 671 700
[2] , , J. Reine Angew. Math. 1990 167 212
[3] , , Proc. R. Soc. Lond. A 1999 1401 1433
[4] , , Rocky Mountain J. Math. 1997 123 150
[5] , Ann. Institute. Henri Poincare, Analysis non lineaire 1992 497 572
[6] , Dyn. Stab. Syst. 1991 33 49
[7] Mem. Amer. Math. Soc. 1983
[8] J. Carr. Application of centre manifold theory. Applied Mathematical Sciences, Vol.35, Springer-Verlag, New York, 1981.
[9] , SIAM J.Math. Anal. 2007 437 448
[10] , J. Differential Equations 2009 3038 3057
[11] , Physica D 1998 346 368
[12] , , Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models SIAM J. Math. Anal. 2010 2434 2472
[13] , J. Differential Equations 2010 1726 1745
[14] D. Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, Springer-Verlag, New York, 1981.
[15] Japan J. Indust. Appl. Math. 2007 79 104
[16] , Discrete Contin. Dyn. Syst. 2006 681 701
[17] T. Kato. Peturbation theory for linear operators. corrected printing of the second edition, Springer-Verlag, Berlin, 1980.
[18] , J. Differential Equations 1998 399 456
[19] Nonl. Anal. TMA 1998 1269 1292
[20] , , Proc. R. Soc. Lond. B 1994 155 174
[21] , SIAM J. Math. Anal. 2012 1474 1521
[22] , Euro. J. Applied Mathematics 1998 285 304
[23] , Philos. Trans. Roy. Soc. London Ser. A 1992 47 94
[24] Proc. Roy. Soc. Edinburgh, Sect A 1978 213 234
[25] Advances in Math. 1976 312 255
[26] , IMA J. Appl. Math. 1996 289 302
[27] , Proc. R. Soc. Lond. A 1999 1561 1598
[28] J. Math. Kyoto. Univ. 1978 453 508
[29] Y. Wu, Y.X. Wu. Asymptotic behavior of solution to degeneate Fisher equations with algebraic decaying initial values. peprint.
[30] , Discrete Contin. Dyn. Syst. A 2008 1123 1139
[31] , J. Math. Anal. Appl. 2005 698 711
[32] , , Discrete Contin. Dyn. Syst. A 2006 47 66
Cité par Sources :