Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20138306,
author = {Y. Zhang and X.-Q. Zhao},
title = {Spatial {Dynamics} of {A} {Reaction-Diffusion} {Model} with {Distributed} {Delay}},
journal = {Mathematical modelling of natural phenomena},
pages = {60--77},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2013},
doi = {10.1051/mmnp/20138306},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138306/}
}
TY - JOUR AU - Y. Zhang AU - X.-Q. Zhao TI - Spatial Dynamics of A Reaction-Diffusion Model with Distributed Delay JO - Mathematical modelling of natural phenomena PY - 2013 SP - 60 EP - 77 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138306/ DO - 10.1051/mmnp/20138306 LA - en ID - 10_1051_mmnp_20138306 ER -
%0 Journal Article %A Y. Zhang %A X.-Q. Zhao %T Spatial Dynamics of A Reaction-Diffusion Model with Distributed Delay %J Mathematical modelling of natural phenomena %D 2013 %P 60-77 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138306/ %R 10.1051/mmnp/20138306 %G en %F 10_1051_mmnp_20138306
Y. Zhang; X.-Q. Zhao. Spatial Dynamics of A Reaction-Diffusion Model with Distributed Delay. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 60-77. doi: 10.1051/mmnp/20138306
[1] Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations Adv. Diff. Eq. 1997 125 160
[2] , , Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system J. Diff. Eq. 2008 2749 2770
[3] , Monotone wavefronts for partially degenerate reaction-diffusion systems J. Dyn. Diff. Eq. 2009 663 680
[4] J. Fang, X.-Q. Zhao. Bistable traveling waves for monotone semiflows with applications. Journal of European Math. Soc., in press.
[5] , A nonlinear structured population model of tumor growth with quiescence J. Math. Biol. 1990 671 694
[6] Lin. Alg. Appl. 2008 1620 1627
[7] Math. Models Natur. Phenom. 2008 115 125
[8] , Can. Appl. Math. Q. 2002 473 499
[9] , Disc. Cont. Dyn. Sys.(Ser. B) 2012 849 869
[10] , , Math. Biosci. 1994 225 239
[11] , 2007 1 40
[12] , J. Dyn. Diff. Eq. 2007 391 436
[13] , Mathematics in Medicine and Biology 2010 313 342
[14] , J. Math. Biol. 2006 231 252
[15] , Trans. Amer. Math. Soc. 1990 1 44
[16] Trans. Amer. Math. Soc. 1987 587 615
[17] H. L. Smith. Monotone dynamical systems: An introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr.,vol. 41. Amer. Math. Soc., Providence, RI, 1995.
[18] , SIAM J. Math. Anal. 2000 514 534
[19] , J. Diff. Eq 2003 430 470
[20] , , J. Diff. Eq 2006 185 232
[21] , J. Dyn. Diff. Eq. 2001 651 687
[22] , J. Dyn. Diff. Eq. 2006 1001 1019
[23] X.-Q. Zhao. Dynamical Systems in Population Biology. Springer-Verlag, New York, 2003.
Cité par Sources :