Inside Dynamics of Delayed Traveling Waves
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 42-59.

Voir la notice de l'article provenant de la source EDP Sciences

The notion of inside dynamics of traveling waves has been introduced in the recent paper [14]. Assuming that a traveling wave u(t,x) = U(x − c   t) is made of several components υi ≥ 0 (i ∈ I ⊂ N), the inside dynamics of the wave is then given by the spatio-temporal evolution of the densities of the components υi. For reaction-diffusion equations of the form ∂tu(t,x) = ∂xxu(t,x) + f(u(t,x)), where f is of monostable or bistable type, the results in [14] show that traveling waves can be classified into two main classes: pulled waves and pushed waves. Using the same framework, we study the pulled/pushed nature of the traveling wave solutions of delay equations              ∂tu(t,x) = ∂xxu(t,x) + F(u(t −τ,x),u(t,x)) We begin with a review of the latest results on the existence of traveling wave solutions of such equations, for several classical reaction terms. Then, we give analytical and numerical results which describe the inside dynamics of these waves. From a point of view of population ecology, our study shows that the existence of a non-reproductive and motionless juvenile stage can slightly enhance the genetic diversity of a species colonizing an empty environment.
DOI : 10.1051/mmnp/20138305

O. Bonnefon 1 ; J. Garnier 1, 2 ; F. Hamel 2, 3 ; L. Roques 1

1 UR 546 Biostatistique et Processus Spatiaux, INRA, 84000 Avignon, France
2 Aix Marseille Université, CNRS, Centrale Marseille, LATP, UMR 7353 , 13453 Marseille, France
3 Institut Universitaire de France
@article{MMNP_2013_8_3_a4,
     author = {O. Bonnefon and J. Garnier and F. Hamel and L. Roques},
     title = {Inside {Dynamics} of {Delayed} {Traveling} {Waves}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {42--59},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138305/}
}
TY  - JOUR
AU  - O. Bonnefon
AU  - J. Garnier
AU  - F. Hamel
AU  - L. Roques
TI  - Inside Dynamics of Delayed Traveling Waves
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 42
EP  - 59
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138305/
DO  - 10.1051/mmnp/20138305
LA  - en
ID  - MMNP_2013_8_3_a4
ER  - 
%0 Journal Article
%A O. Bonnefon
%A J. Garnier
%A F. Hamel
%A L. Roques
%T Inside Dynamics of Delayed Traveling Waves
%J Mathematical modelling of natural phenomena
%D 2013
%P 42-59
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138305/
%R 10.1051/mmnp/20138305
%G en
%F MMNP_2013_8_3_a4
O. Bonnefon; J. Garnier; F. Hamel; L. Roques. Inside Dynamics of Delayed Traveling Waves. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 42-59. doi : 10.1051/mmnp/20138305. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138305/

[1] M. Aguerrea, S. Trofimchuk, G. Valenzuela Proc. Royal Soc. A 2008 2591 2608

[2] S. Ai J. Diff. Equations 2007 104 133

[3] D. G. Aronson, H. G. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve propagation. In Partial Differential Equations and Related Topics, volume 446 of Lectures Notes Math, 5–49. Springer, New York, 1975.

[4] D. G. Aronson, H. G. Weinberger Adv. Math. 1978 33 76

[5] F. Austerlitz, S. Mariette, N. Machon, P. H. Gouyon, B. Godelle Genetics 2000 1309 1321

[6] L. Berec, E. Angulo, F. Courchamp Trends Ecol. Evol. 2007 185 191

[7] J. Billingham, D. J. Needham Phil. Trans. Royal Soc. A 1991 1 24

[8] M. Bramson Mem. Amer. Math. Soc. 1983

[9] N. F. Britton. Reaction-Diffusion Equations and their Applications to Biology. Academic Press, London, 1986.

[10] J. P. Eckmann, C. E. Wayne Comm. Math. Phys. 1994 323 334

[11] T. Faria, S. Trofimchuk J. Diff. Equations 2006 357 376

[12] P. C. Fife. Mathematical Aspects of Reacting and Diffusing Systems, volume 28 of Lecture Notes in Biomathematics. Springer-Verlag, 1979.

[13] P. C. Fife, J. Mcleod Arch. Ration. Mech. Anal. 1977 335 361

[14] J. Garnier, T. Giletti, F. Hamel, L. Roques J. Math. Pures Appl. 2012 428 449

[15] J. Garnier, L. Roques, F. Hamel B. Math. Biol. 2012 453 473

[16] A. Gomez, S. Trofimchuk J. Diff. Equations 2011 1767 1787

[17] P. Grindrod. Theory and Applications of Reaction-Diffusion Equations. Clarendon Press, 1996.

[18] O. Hallatschek, D. R. Nelson Theor. Popul. Biol. 2008 158 170

[19] F. Hamel, J. Nolen, J.-M. Roquejoffre, L. Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Heterog. Media, In press (2013).

[20] K. Hasik, S. Trofimchuk. Slowly oscillating wavefronts of the KPP-Fisher delayed equation. arXiv, arXiv:1206.0484 (2012).

[21] A. L. Hodgkin, A. F. Huxley J. Physiology 1952 500 544

[22] G. E. Hutchinson Ann. New York Acad. Sci. 1948 221 246

[23] J. I. Kanel Sov. Math. Doklady 1961 48 51

[24] K. Kobayashi Hiroshima Math. J. 1977 459 472

[25] A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov Bull. Univ. État Moscou, Sér. Int. A 1937 1 26

[26] M. K. Kwong, J. Ou J. Diff. Equations 2010 728 745

[27] K.-S. Lau J. Diff. Equations 1985 44 70

[28] M. A. Lewis, P. Kareiva Theor. Popul. Biol. 1993 141 158

[29] M. A. Lewis, P. Van Den Driessche Math. Biosci. 1993 221 247

[30] X. Liang, X.-Q. Zhao Comm. Pure Appl. Math. 2007 1 40

[31] S. Ma J. Diff. Equations 2007 259 277

[32] J. D. Murray. Mathematical Biology. Third Edition. Interdisciplinary Applied Mathematics 17, Springer-Verlag, New York, 2002.

[33] S. Pan Nonlinear Anal. Real World Appl. 2009 1173 1182

[34] L. Roques, J. Garnier, F. Hamel, E K. Klein Proc. Natl. Acad. Sci. USA 2012 8828 8833

[35] L. Roques, F. Hamel, J. Fayard, B. Fady, E K. Klein Theor. Popul. Biol. 2010 205 212

[36] D. H. Sattinger Adv. Math. 1976 312 355

[37] D. H. Sattinger J. Diff. Equations 1977 130 144

[38] K. W. Schaaf Trans. Amer. Math. Soc. 1987 587 615

[39] N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution, Oxford: Oxford University Press, 1997.

[40] A. N. Stokes Math. Biosci. 1976 307 315

[41] E. Trofimchuk, P. Alvarado, S. Trofimchuk J. Diff. Equations 2009 1422 1444

[42] E. Trofimchuk, M. Pinto, S. Trofimchuk. Pushed traveling fronts in monostable equations with monotone delayed reaction. arXiv:1111.5161v1.

[43] K. Uchiyama J. Math. Kyoto Univ. 1978 453 508

[44] M. O. Vlad, L. L. Cavalli-Sforza, J. Ross Proc. Natl. Acad. Sci. USA 2004 10249 10253

[45] Z.-C. Wang, W.-T. Li, S. Ruan J. Diff. Equations 2006 185 232

[46] Z.-C. Wang, W.-T. Li, S. Ruan J. Diff. Equations 2007 153 200

[47] J. Wu. Theory and Applications of Partial Functional Differential Equations, volume 119 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

[48] J. Wu, X. Zou J. Dyn. Diff. Equations 2001 651 687

[49] X. Zou J. Comput. Appl. Math. 2002 309 321

Cité par Sources :