Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 33-41.

Voir la notice de l'article provenant de la source EDP Sciences

Traveling waves for the nonlocal Fisher Equation can exhibit much more complex behaviour than for the usual Fisher equation. A striking numerical observation is that a traveling wave with minimal speed can connect a dynamically unstable steady state 0 to a Turing unstable steady state 1, see [12]. This is proved in [1, 6] in the case where the speed is far from minimal, where we expect the wave to be monotone. Here we introduce a simplified nonlocal Fisher equation for which we can build simple analytical traveling wave solutions that exhibit various behaviours. These traveling waves, with minimal speed or not, can (i) connect monotonically 0 and 1, (ii) connect these two states non-monotonically, and (iii) connect 0 to a wavetrain around 1. The latter exist in a regime where time dynamics converges to another object observed in [3, 8]: a wave that connects 0 to a pulsating wave around 1.
DOI : 10.1051/mmnp/20138304

G. Nadin 1 ; L. Rossi 2 ; L. Ryzhik 3 ; B. Perthame 1

1 Laboratoire Jacques-Louis Lions, UPMC Univ. Paris 6 and CNRS UMR 7598, F-75005, Paris
2 Dipartimento di Matematica, Università degli Studi di Padova
3 Department of Mathematics, Stanford University, Stanford CA 94305
@article{MMNP_2013_8_3_a3,
     author = {G. Nadin and L. Rossi and L. Ryzhik and B. Perthame},
     title = {Wave-like {Solutions} for {Nonlocal} {Reaction-diffusion} {Equations:} a {Toy} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/}
}
TY  - JOUR
AU  - G. Nadin
AU  - L. Rossi
AU  - L. Ryzhik
AU  - B. Perthame
TI  - Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 33
EP  - 41
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/
DO  - 10.1051/mmnp/20138304
LA  - en
ID  - MMNP_2013_8_3_a3
ER  - 
%0 Journal Article
%A G. Nadin
%A L. Rossi
%A L. Ryzhik
%A B. Perthame
%T Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
%J Mathematical modelling of natural phenomena
%D 2013
%P 33-41
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/
%R 10.1051/mmnp/20138304
%G en
%F MMNP_2013_8_3_a3
G. Nadin; L. Rossi; L. Ryzhik; B. Perthame. Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 33-41. doi : 10.1051/mmnp/20138304. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/

[1] M. Alfaro, J. Coville Appl. Math. Lett. 2095 2099 2012

[2] N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter Disc. Cont. Dyn. Syst. B 537 557 2010

[3] H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik Nonlinearity 2813 2844 2009

[4] N. Britton SIAM J. Appl. Math. 1663 1688 1990

[5] A. Doelman, B. Sandstede, A. Scheel, G. Schneider Mem. Amer. Math. Soc. 2009

[6] J. Fang, X-Q. Zhao Nonlinearity 3043 3054 2011

[7] J-É Furter, M. Grinfeld J. Math. Biol. 65 80 1989

[8] S. Genieys, V. Volpert, P. Auger Math. Modelling Nat. Phenom. 65 82 2006

[9] A. Gomez, S. Trofimchuk J. Diff. Eq. 1767 1787 2011

[10] S. Gourley J. Math. Biol. 272 284 2000

[11] M.K. Kwong, C. Ou J. Diff. Eq. 728 745 2010

[12] G. Nadin, B. Perthame, M. Tang C. R. Math. Acad. Sci. Paris 553 557 2011

[13] A. Turing Phil. Trans. Royal Soc. London. Serie B, Biol. Sc. 37 72 1952

Cité par Sources :