Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 33-41 Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

Traveling waves for the nonlocal Fisher Equation can exhibit much more complex behaviour than for the usual Fisher equation. A striking numerical observation is that a traveling wave with minimal speed can connect a dynamically unstable steady state 0 to a Turing unstable steady state 1, see [12]. This is proved in [1, 6] in the case where the speed is far from minimal, where we expect the wave to be monotone. Here we introduce a simplified nonlocal Fisher equation for which we can build simple analytical traveling wave solutions that exhibit various behaviours. These traveling waves, with minimal speed or not, can (i) connect monotonically 0 and 1, (ii) connect these two states non-monotonically, and (iii) connect 0 to a wavetrain around 1. The latter exist in a regime where time dynamics converges to another object observed in [3, 8]: a wave that connects 0 to a pulsating wave around 1.
DOI : 10.1051/mmnp/20138304

G. Nadin 1 ; L. Rossi 2 ; L. Ryzhik 3 ; B. Perthame 1

1 Laboratoire Jacques-Louis Lions, UPMC Univ. Paris 6 and CNRS UMR 7598, F-75005, Paris
2 Dipartimento di Matematica, Università degli Studi di Padova
3 Department of Mathematics, Stanford University, Stanford CA 94305
@article{10_1051_mmnp_20138304,
     author = {G. Nadin and L. Rossi and L. Ryzhik and B. Perthame},
     title = {Wave-like {Solutions} for {Nonlocal} {Reaction-diffusion} {Equations:} a {Toy} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {33--41},
     year = {2013},
     volume = {8},
     number = {3},
     doi = {10.1051/mmnp/20138304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/}
}
TY  - JOUR
AU  - G. Nadin
AU  - L. Rossi
AU  - L. Ryzhik
AU  - B. Perthame
TI  - Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 33
EP  - 41
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/
DO  - 10.1051/mmnp/20138304
LA  - en
ID  - 10_1051_mmnp_20138304
ER  - 
%0 Journal Article
%A G. Nadin
%A L. Rossi
%A L. Ryzhik
%A B. Perthame
%T Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
%J Mathematical modelling of natural phenomena
%D 2013
%P 33-41
%V 8
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138304/
%R 10.1051/mmnp/20138304
%G en
%F 10_1051_mmnp_20138304
G. Nadin; L. Rossi; L. Ryzhik; B. Perthame. Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 33-41. doi: 10.1051/mmnp/20138304

[1] M. Alfaro, J. Coville Appl. Math. Lett. 2095 2099 2012

[2] N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter Disc. Cont. Dyn. Syst. B 537 557 2010

[3] H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik Nonlinearity 2813 2844 2009

[4] N. Britton SIAM J. Appl. Math. 1663 1688 1990

[5] A. Doelman, B. Sandstede, A. Scheel, G. Schneider Mem. Amer. Math. Soc. 2009

[6] J. Fang, X-Q. Zhao Nonlinearity 3043 3054 2011

[7] J-É Furter, M. Grinfeld J. Math. Biol. 65 80 1989

[8] S. Genieys, V. Volpert, P. Auger Math. Modelling Nat. Phenom. 65 82 2006

[9] A. Gomez, S. Trofimchuk J. Diff. Eq. 1767 1787 2011

[10] S. Gourley J. Math. Biol. 272 284 2000

[11] M.K. Kwong, C. Ou J. Diff. Eq. 728 745 2010

[12] G. Nadin, B. Perthame, M. Tang C. R. Math. Acad. Sci. Paris 553 557 2011

[13] A. Turing Phil. Trans. Royal Soc. London. Serie B, Biol. Sc. 37 72 1952

Cité par Sources :