Rocking Subdiffusive Ratchets: Origin, Optimization and Efficiency
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 144-158.

Voir la notice de l'article provenant de la source EDP Sciences

We study origin, parameter optimization, and thermodynamic efficiency of isothermal rocking ratchets based on fractional subdiffusion within a generalized non-Markovian Langevin equation approach. A corresponding multi-dimensional Markovian embedding dynamics is realized using a set of auxiliary Brownian particles elastically coupled to the central Brownian particle (see video on the journal web site). We show that anomalous subdiffusive transport emerges due to an interplay of nonlinear response and viscoelastic effects for fractional Brownian motion in periodic potentials with broken space-inversion symmetry and driven by a time-periodic field. The anomalous transport becomes optimal for a subthreshold driving when the driving period matches a characteristic time scale of interwell transitions. It can also be optimized by varying temperature, amplitude of periodic potential and driving strength. The useful work done against a load shows a parabolic dependence on the load strength. It grows sublinearly with time and the corresponding thermodynamic efficiency decays algebraically in time because the energy supplied by the driving field scales with time linearly. However, it compares well with the efficiency of normal diffusion rocking ratchets on an appreciably long time scale.
DOI : 10.1051/mmnp/20138210

I. Goychuk 1 ; V. O. Kharchenko 2

1 Institute of Physics, University of Augsburg, Universitätstr. 1, D-86135 Augsburg, Germany & Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
2 Institute of Applied Physics, NAS of Ukraine, 58 Petropavlovskaya str., 40030 Sumy, Ukraine
@article{MMNP_2013_8_2_a9,
     author = {I. Goychuk and V. O. Kharchenko},
     title = {Rocking {Subdiffusive} {Ratchets:} {Origin,} {Optimization} and {Efficiency}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {144--158},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     doi = {10.1051/mmnp/20138210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138210/}
}
TY  - JOUR
AU  - I. Goychuk
AU  - V. O. Kharchenko
TI  - Rocking Subdiffusive Ratchets: Origin, Optimization and Efficiency
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 144
EP  - 158
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138210/
DO  - 10.1051/mmnp/20138210
LA  - en
ID  - MMNP_2013_8_2_a9
ER  - 
%0 Journal Article
%A I. Goychuk
%A V. O. Kharchenko
%T Rocking Subdiffusive Ratchets: Origin, Optimization and Efficiency
%J Mathematical modelling of natural phenomena
%D 2013
%P 144-158
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138210/
%R 10.1051/mmnp/20138210
%G en
%F MMNP_2013_8_2_a9
I. Goychuk; V. O. Kharchenko. Rocking Subdiffusive Ratchets: Origin, Optimization and Efficiency. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 144-158. doi : 10.1051/mmnp/20138210. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138210/

[1] F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis, S. Leibler Phys. Rev. Lett. 1996 4470 4473

[2] F. Barbi, M. Bologna, P. Grigolini Phys. Rev. Lett. 2005 220601

[3] E. Barkai Phys. Rev. E 2001 046118

[4] R. Bartussek, P. Hänggi, J. G. Kissner Europhys. Lett. 1994 459 464

[5] N. N. Bogolyubov, Elementary example of establishing thermal equilibrium in a system coupled to thermostat. in On some statistical methods in mathematical physics. Acad. Sci. Ukrainian SSR, Kiev, 1945, pp. 115-137, in Russian.

[6] J.-P. Bouchaud, A. Georges Phys. Rep. 1990 127 293

[7] S. Burov, E. Barkai Phys. Rev. Lett. 2008 070601

[8] Y. C. Chen, J. L. Lebowitz Phys. Rev. B 1992 10743 10750

[9] K. S. Cole, R. H. Cole J. Chem. Phys. 1941 341 352

[10] W. H. Deng, E. Barkai Phys. Rev. E 2009 011112

[11] G. W. Ford, M. Kac, P. Mazur J. Math. Phys. 1965 504 515

[12] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni Rev. Mod. Phys. 1998 223 288

[13] T. C. Gard. Introduction to Stochastic Differential Equations. Dekker, New York, 1988.

[14] A. Gemant Physics 1936 311 317

[15] I. Goychuk, P. Hänggi Phys. Rev. Lett. 2003 070601

[16] I. Goychuk, P. Hänggi Phys. Rev. E 2004 021104

[17] I. Goychuk, P. Hänggi, J. L. Vega, S. Miret-Artes Phys. Rev. E 2005 061906

[18] I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, P. Hänggi Phys. Rev. E 2006 020101

[19] I. Goychuk, P. Hänggi Phys. Rev. Lett. 2007 200601

[20] I. Goychuk Phys. Rev. E 2007 040102(R)

[21] I. Goychuk Phys. Rev. E 2009 046125

[22] I. Goychuk Chem. Phys. 2010 450 457

[23] I. Goychuk, P. Hänggi. Subdiffusive dynamics in washboard potentials: two different approaches and different universality classes. in J. Klafter, S. C. Lim, R. Metzler, editors. Fractional Dynamics, Recent Advances. World Scientific, Singapore, 2011, Ch. 13, pp. 307–329.

[24] I. Goychuk Adv. Chem. Phys. 2012 187 253

[25] I. Goychuk Fluct. Noise Lett. 2012 1240009

[26] I. Goychuk, V. Kharchenko Phys. Rev. E 2012 051131

[27] Y. He, S. Burov, R. Metzler, E. Barkai Phys. Rev. Lett. 2008 058101

[28] E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, P. Hänggi Phys. Rev. E 2006 046133

[29] E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi Phys. Rev. Lett. 2007 120602

[30] E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi Phys. Rev. E 2009 041137

[31] B. D. Hughes. Random walks and random environments, Vols. 1,2. Clarendon Press, Oxford, 1995.

[32] F. Jülicher, A. Ajdari, J. Prost Rev. Mod. Phys. 1997 1269 1282

[33] V. Kharchenko, I. Goychuk New J. Phys. 2012 043042

[34] A. N. Kolmogorov. Dokl. Akad. Nauk SSSR, 26 (1940), 115–118 (in Russian), English transl. Wiener spirals and some other interesting curves in a Hilbert space, in V. M. Tikhomirov, editor. Selected Works of A. N. Kolmogorov, vol. I, Mechanics and Mathematics. Kluwer, Dordrecht, 1991, pp. 303-307.

[35] R. Kubo Rep. Prog. Phys. 1966 255 284

[36] R. Kubo, M. Toda, and M. Hashitsume. Nonequilibrium Statistical Mechanics, 2nd ed. Springer, Berlin, 1991.

[37] R. Kupferman J. Stat. Phys. 2004 291 326

[38] A. Lubelski, I. M. Sokolov, J. Klafter Phys. Rev. Lett. 2008 250602

[39] E. Lutz Phys. Rev. E 2001 051106

[40] M. O. Magnasco Phys. Rev. Lett. 1993 1477 1481

[41] F. Mainardi, P. Pironi Extracta Mathematicae 1996 140

[42] Yu. A. Makhnovskii, V. M. Rozenbaum, D.-Y. Yang, S. H. Lin, T. Y. Tsong Phys. Rev. E 2004 021102

[43] B. B. Mandelbrot, J. W. Van Ness SIAM Review 1968 422 437

[44] B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman Company, New York, 1977.

[45] P. Hänggi, F. Marchesoni Rev. Mod. Phys. 2009 387 442

[46] J. C. Maxwell Phil. Trans. R. Soc. Lond. 1867 49 88

[47] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[48] E. M. Montroll, G.H. Weiss J. Math. Phys. 1965 167

[49] R. G. Palmer, D. L. Stein, E. Abrahams, P. W. Anderson Phys. Rev. Lett. 1984 958 961

[50] P. Reimann Phys. Rep. 2002 57 265

[51] H. Scher, E. M. Montroll Phys. Rev. B 1975 2455 2477

[52] U. Seifert Phys. Rev. Lett. 2011 020601

[53] K. Sekimoto J. Phys. Soc. Jpn. 1997 1234 1237

[54] M. F. Shlesinger J. Stat. Phys. 1974 421 434

[55] I.M. Sokolov, J. Klafter Chaos 2005 026103

[56] I. M. Sokolov, J. Klafter Phys. Rev. Lett. 2006 140602

[57] I. M. Sokolov, E. Heinsalu, P. Hänggi, I. Goychuk Europhys. Lett. 2009 30009

[58] N. Kumar, K. Lindenberg Phys. Rev. Lett. 2012 210602

[59] U. Weiss. Quantum Dissipative Systems, 2nd ed. World Scientific, Singapore, 1999.

[60] R. Zwanzig J. Stat. Phys. 1973 215 220

[61] R. Zwanzig. Nonequilibrium statistical mechanics. Oxford Univ. Press, Oxford, 2008.

Cité par Sources :