Dynamics in Nonlinear Schrödinger Equation with dc bias: From Subdiffusion to Painlevé Transcendent
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 88-99.

Voir la notice de l'article provenant de la source EDP Sciences

Dynamics of the nonlinear Schrödinger equation in the presence of a constant electric field is studied. Both discrete and continuous limits of the model are considered. For the discrete limit, a probabilistic description of subdiffusion is suggested and a subdiffusive spreading of a wave packet is explained in the framework of a continuous time random walk. In the continuous limit, the biased nonlinear Schrödinger equation is shown to be integrable, and solutions in the form of the Painlevé transcendents are obtained.
DOI : 10.1051/mmnp/20138206

A. Iomin 1

1 Department of Physics and Solid State Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
@article{MMNP_2013_8_2_a5,
     author = {A. Iomin},
     title = {Dynamics in {Nonlinear} {Schr\"odinger} {Equation} with dc bias: {From} {Subdiffusion} to {Painlev\'e} {Transcendent}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {88--99},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     doi = {10.1051/mmnp/20138206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138206/}
}
TY  - JOUR
AU  - A. Iomin
TI  - Dynamics in Nonlinear Schrödinger Equation with dc bias: From Subdiffusion to Painlevé Transcendent
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 88
EP  - 99
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138206/
DO  - 10.1051/mmnp/20138206
LA  - en
ID  - MMNP_2013_8_2_a5
ER  - 
%0 Journal Article
%A A. Iomin
%T Dynamics in Nonlinear Schrödinger Equation with dc bias: From Subdiffusion to Painlevé Transcendent
%J Mathematical modelling of natural phenomena
%D 2013
%P 88-99
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138206/
%R 10.1051/mmnp/20138206
%G en
%F MMNP_2013_8_2_a5
A. Iomin. Dynamics in Nonlinear Schrödinger Equation with dc bias: From Subdiffusion to Painlevé Transcendent. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 88-99. doi : 10.1051/mmnp/20138206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138206/

[1] P.W. Anderson Phys. Rev. 1958 1492 1505

[2] Yu.Yu. Bagderina Differential Equations 2007 595 604

[3] R. Bekenstein, M. Segev Optics Express 2011 23706 23715

[4] D. ben-Avraam, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. University Press, Cambridge, 2000.

[5] M.V. Berry, N.L. Balazs Am. J. Phys. 1979 264 267

[6] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clťement, L. Sanchez-Palencia, P. Bouyer, A. Aspect Nature 2008 891 894

[7] B.V. Chirikov, V.V. Vecheslavov Sov. Phys. JETP 1997 616

[8] H.T. Davis. Introduction to Nonlinear Differential and Integral Equations. Dover Publications Inc., New York, 1962.

[9] D. Emin, C.F. Hart Phys. Rev. B 1987 7353 7359

[10] S. Flach Chem. Phys. 2010 548 556

[11] S. Flach, D.O. Krimer, Ch. Skokos Phys. Rev. Lett. 2008 024101

[12] H. Fukuyama, R.A. Bari, H.C. Fogedby Phys. Rev. B 1973 5579 5586

[13] Y. He, S. Burov, R. Metzler, E. Barkai Phys. Rev. Lett. 2008 058101

[14] E.L. Ince. Ordinary Differential Equations. Longmans, Green and CO. LTD., London, 1927.

[15] A. Iomin Phys. Rev. E 2010 017601

[16] A. Iomin Phys. Rev. E 2009 037601

[17] E. Janke, F. Emde, F. Lösch. Tafeln Höherer Functionen. B.G. Taubner Verlagsgesellschaft, Stuttgart, 1960.

[18] I. Kramer, M. Segev, D.N. Christodoulides Phys. Rev. Lett. 20110 213903

[19] I. Kramer, Y. Lamer, M. Segev, D.N. Christodoulides Optics Express 2011 23132 23139

[20] A.R. Kolovsky, E.A. Gómez, H.J. Korsh Phys. Rev. A 2010 025603

[21] D.O. Krimer, R. Khomeriki, S. Flach Phys. Rev. E 2009 036201

[22] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg Phys. Rev. Lett. 2008 013906

[23] I.M. Lifshits, S.A. Gredeskul, and L.A. Pastur. Introduction to the Theory of Disordered Systems. Wiley-Interscience, New York, 1988.

[24] O. Lyubomudrov, M. Edelman, G.M. Zaslavsky Intl. J. Modern Phys. B 2003 4149 4167

[25] F. Mainardi Chaos Solitons Fractals 1996 1461 1477

[26] R. Metzler Phys. Rev. E 2000 6233 6245

[27] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[28] A.V. Milovanov Phys. Rev. E 2009 046403

[29] A.V. Milovanov, A. Iomin Europhys. Lett. 2012 10006

[30] M.I. Molina Phys. Rev. B 1998 12547

[31] E.W. Montroll, M.F. Shlesinger In Studies in Statistical Mechanics

[32] E.W. Montroll, G.H. Weiss Random walks on lattices. II J. Math. Phys. 1965 167 J. Math. Phys. 1969 753

[33] M. Mulansky, K. Ahnert, A. Pikovsky, D.L. Shepelyansky J. Stat. Phys. 2011 1256 1274

[34] K.B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, Orlando, 1974.

[35] F.W.J. Olver. Asymptotics and Special Function. Academic Press, New York, 1974.

[36] A.S. Pikovsky, D.L. Shepelyansky Phys. Rev. Lett. 2008 094101

[37] O.J. Pine, D.A. Weitz, P.M. Chaikin, E. Herbolzheimer Phys Rev Lett. 1988 1134 1137

[38] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999.

[39] T. Schwartz, G. Bartal, S. Fishman, M. Segev Nature 2007 52

[40] D.L. Shepelyansky Phys. Rev. Lett. 1993 1787

[41] N.N. Tarkhanov, private communication.

[42] G.H. Wannier Phys. Rev. 1960 432 439

[43] G.M. Zaslavsky. Statistical Irreversibility in Non- linear Systems. Nauka, Moscow, 1970.

[44] G.M. Zaslavsky Physica D 1994 110 122

Cité par Sources :