Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_2_a4, author = {Y. Nec and M. J. Ward}, title = {An {Explicitly} {Solvable} {Nonlocal} {Eigenvalue} {Problem} and the {Stability} of a {Spike} for a {Sub-Diffusive} {Reaction-Diffusion} {System}}, journal = {Mathematical modelling of natural phenomena}, pages = {55--87}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2013}, doi = {10.1051/mmnp/20138205}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/} }
TY - JOUR AU - Y. Nec AU - M. J. Ward TI - An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System JO - Mathematical modelling of natural phenomena PY - 2013 SP - 55 EP - 87 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/ DO - 10.1051/mmnp/20138205 LA - en ID - MMNP_2013_8_2_a4 ER -
%0 Journal Article %A Y. Nec %A M. J. Ward %T An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System %J Mathematical modelling of natural phenomena %D 2013 %P 55-87 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/ %R 10.1051/mmnp/20138205 %G en %F MMNP_2013_8_2_a4
Y. Nec; M. J. Ward. An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 55-87. doi : 10.1051/mmnp/20138205. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/
[1] Europ. J. Appl. Math. 2009 187 214
,[2] SIAM J. Appl. Dyn. Sys. 2011 582 666
,[3] SIAM J. Appl. Math. 2000 1080 1102
, ,[4] SIAM J. Appl. Math. 2000 2036 2061
, ,[5] Indiana U. Math. Journ. 2001 443 507
, ,[6] SIAM J. Appl. Dyn. Sys. 2003 53 96
,[7] SIAM J. Math. Anal. 2007 1760 1789
, ,[8] SIAM J. Appl. Dyn. Sys. 2002 65 104
,[9] J. Ehrt, J. D. Rademacher, M. Wolfrum. First and second order semi-strong interaction of pulses in the Schnakenberg model. preprint, (2012).
[10] SIAM J. Appl. Math. 2008 251 272
, ,[11] SIAM J. Appl. Math. 2002 870 887
,[12] SIAM J. Appl. Math. 2000 778 802
,[13] Physica D 2001 25 62
, ,[14] SIAM J. Appl. Math. 2002 1924 1951
,[15] Studies in Appl. Math. 2005 21 71
, ,[16] Interfaces and Free Boundaries 2006 185 222
, ,[17] T. Kolokolnikov, M. Ward, J. Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Disc. Cont. Dyn. Sys Series B., to appear, (2013), (34 pages).
[18] J. Diff. Eq. 1988 1 27
, ,[19] Phys. Rep. 2000 1 77
,[20] SIAM J. Appl. Math. 2002 1463 1487
,[21] Discr. Cont. Dyn. Sys. Series A 2010 827 846
, ,[22] Math. Model. Nat. Phenom. 2007 77 105
,[23] J. Physics A: Math. Theor. 2007 14687 14702
,[24] Physica D 2012 947 963
,[25] Y. Nec, M. J. Ward. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. submitted, (2013), (28 pages)
[26] K. B. Oldham, J. Spanier. The fractional calculus. Academic Press, New York, 1974.
[27] I. Podlubny. Fractional differential equations. Academic Press, San Diego, 1999.
[28] J. D. Rademacher. First and second order semi-strong interface interaction in reaction-diffusion systems. SIAM J. App. Dyn. Syst., (2012), to appear.
[29] Astrophys. Space Sci. 2006 289 296
, ,[30] Studies in Appl. Math. 2003 41 84
, , ,[31] SIAM J. App. Dyn. Sys. 2005 904 953
, ,[32] W. H. Tse, M. J. Ward. On explicitly solvable nonlocal eigenvalue problems and the stability of localized pulses. to be submitted, Applied Math Letters, (2013).
[33] Math. Model. Nat. Phenom. 2011 87 118
, , ,[34] Europ. J. Appl. Math. 2011 423 453
, , ,[35] J. C. Tzou, Y. Nec, M. J. Ward, The Stability of Localized Spikes for the 1-D Brusselator Reaction-Diffusion Model. Europ. J. Appl. Math., (2012), under review.
[36] Indiana U. Math. J. 2005 1219 1301
,[37] J. Nonlinear Science 2003 209 264
,[38] Europ. J. Appl. Math. 2003 677 711
,[39] Europ. J. Appl. Math. 1999 353 378
[40] J. Wei. Existence and stability of spikes for the Gierer-Meinhardt system. book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations. Vol. 5 (M. Chipot ed.), Elsevier, (2008), pp. 489–581.
[41] WIAS Preprint 2007
,Cité par Sources :