Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20138205,
author = {Y. Nec and M. J. Ward},
title = {An {Explicitly} {Solvable} {Nonlocal} {Eigenvalue} {Problem} and the {Stability} of a {Spike} for a {Sub-Diffusive} {Reaction-Diffusion} {System}},
journal = {Mathematical modelling of natural phenomena},
pages = {55--87},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2013},
doi = {10.1051/mmnp/20138205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/}
}
TY - JOUR AU - Y. Nec AU - M. J. Ward TI - An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System JO - Mathematical modelling of natural phenomena PY - 2013 SP - 55 EP - 87 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/ DO - 10.1051/mmnp/20138205 LA - en ID - 10_1051_mmnp_20138205 ER -
%0 Journal Article %A Y. Nec %A M. J. Ward %T An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System %J Mathematical modelling of natural phenomena %D 2013 %P 55-87 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138205/ %R 10.1051/mmnp/20138205 %G en %F 10_1051_mmnp_20138205
Y. Nec; M. J. Ward. An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 55-87. doi: 10.1051/mmnp/20138205
[1] , Europ. J. Appl. Math. 2009 187 214
[2] , SIAM J. Appl. Dyn. Sys. 2011 582 666
[3] , , SIAM J. Appl. Math. 2000 1080 1102
[4] , , SIAM J. Appl. Math. 2000 2036 2061
[5] , , Indiana U. Math. Journ. 2001 443 507
[6] , SIAM J. Appl. Dyn. Sys. 2003 53 96
[7] , , SIAM J. Math. Anal. 2007 1760 1789
[8] , SIAM J. Appl. Dyn. Sys. 2002 65 104
[9] J. Ehrt, J. D. Rademacher, M. Wolfrum. First and second order semi-strong interaction of pulses in the Schnakenberg model. preprint, (2012).
[10] , , SIAM J. Appl. Math. 2008 251 272
[11] , SIAM J. Appl. Math. 2002 870 887
[12] , SIAM J. Appl. Math. 2000 778 802
[13] , , Physica D 2001 25 62
[14] , SIAM J. Appl. Math. 2002 1924 1951
[15] , , Studies in Appl. Math. 2005 21 71
[16] , , Interfaces and Free Boundaries 2006 185 222
[17] T. Kolokolnikov, M. Ward, J. Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Disc. Cont. Dyn. Sys Series B., to appear, (2013), (34 pages).
[18] , , J. Diff. Eq. 1988 1 27
[19] , Phys. Rep. 2000 1 77
[20] , SIAM J. Appl. Math. 2002 1463 1487
[21] , , Discr. Cont. Dyn. Sys. Series A 2010 827 846
[22] , Math. Model. Nat. Phenom. 2007 77 105
[23] , J. Physics A: Math. Theor. 2007 14687 14702
[24] , Physica D 2012 947 963
[25] Y. Nec, M. J. Ward. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. submitted, (2013), (28 pages)
[26] K. B. Oldham, J. Spanier. The fractional calculus. Academic Press, New York, 1974.
[27] I. Podlubny. Fractional differential equations. Academic Press, San Diego, 1999.
[28] J. D. Rademacher. First and second order semi-strong interface interaction in reaction-diffusion systems. SIAM J. App. Dyn. Syst., (2012), to appear.
[29] , , Astrophys. Space Sci. 2006 289 296
[30] , , , Studies in Appl. Math. 2003 41 84
[31] , , SIAM J. App. Dyn. Sys. 2005 904 953
[32] W. H. Tse, M. J. Ward. On explicitly solvable nonlocal eigenvalue problems and the stability of localized pulses. to be submitted, Applied Math Letters, (2013).
[33] , , , Math. Model. Nat. Phenom. 2011 87 118
[34] , , , Europ. J. Appl. Math. 2011 423 453
[35] J. C. Tzou, Y. Nec, M. J. Ward, The Stability of Localized Spikes for the 1-D Brusselator Reaction-Diffusion Model. Europ. J. Appl. Math., (2012), under review.
[36] , Indiana U. Math. J. 2005 1219 1301
[37] , J. Nonlinear Science 2003 209 264
[38] , Europ. J. Appl. Math. 2003 677 711
[39] Europ. J. Appl. Math. 1999 353 378
[40] J. Wei. Existence and stability of spikes for the Gierer-Meinhardt system. book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations. Vol. 5 (M. Chipot ed.), Elsevier, (2008), pp. 489–581.
[41] , WIAS Preprint 2007
Cité par Sources :