Voir la notice de l'article provenant de la source EDP Sciences
T. Kosztołowicz 1 ; K. D. Lewandowska 2
@article{MMNP_2013_8_2_a3, author = {T. Koszto{\l}owicz and K. D. Lewandowska}, title = {Application of {Fractional} {Differential} {Equations} in {Modelling} the {Subdiffusion{\textendash}Reaction} {Process}}, journal = {Mathematical modelling of natural phenomena}, pages = {44--54}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2013}, doi = {10.1051/mmnp/20138204}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/} }
TY - JOUR AU - T. Kosztołowicz AU - K. D. Lewandowska TI - Application of Fractional Differential Equations in Modelling the Subdiffusion–Reaction Process JO - Mathematical modelling of natural phenomena PY - 2013 SP - 44 EP - 54 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/ DO - 10.1051/mmnp/20138204 LA - en ID - MMNP_2013_8_2_a3 ER -
%0 Journal Article %A T. Kosztołowicz %A K. D. Lewandowska %T Application of Fractional Differential Equations in Modelling the Subdiffusion–Reaction Process %J Mathematical modelling of natural phenomena %D 2013 %P 44-54 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/ %R 10.1051/mmnp/20138204 %G en %F MMNP_2013_8_2_a3
T. Kosztołowicz; K. D. Lewandowska. Application of Fractional Differential Equations in Modelling the Subdiffusion–Reaction Process. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 44-54. doi : 10.1051/mmnp/20138204. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/
[1] Phys. Rep. 2000 1 77
,[2] J. Phys., A 2004 R161 R208
,[3] Phys. Rev. Lett. 2005
, ,[4] Phys. Rev., E 2005
, ,[5] J. Chem. Phys. 2003 7525 7533
, ,[6] Reaction front in an A + B → C reaction–subdiffusion process Phys. Rev., E 2004
, ,[7] Phys. Rev., E 2008
,[8] D. ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, 2000.
[9] V. Méndez, S. Fedotov, W. Horsthemke. Reaction–Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer-Verlag, Berlin, 2010.
[10] The long–time behavior of initially separated A + B → 0 reaction–diffusion systems with arbitrary diffusion constants J. Stat. Phys. 1996 179 191
[11] The long–time behaviour of initially separated A + B(static) → 0 reaction–diffusion systems Physica, A 1997 622 634
[12] Physica, D 2000 95 121
,[13] Properties of the reaction front in an A + B → C type reaction–diffusion process Phys. Rev., A 1988 3151 3154
,[14] Dynamic Multiscaling of the Reaction–Diffusion Front for mA + nB → 0 Phys. Rev., E 1995 3500 3505
, ,[15] Physica, A 2012 2608 2616
,[16] Exotic Behavior of the Reaction Front in the A + B → C Reaction-Diffusion System Phys. Rev., A 1992 2151 2154
, , , ,[17] Effects of bias on the kinetics of A + B → C with initially separated reactants Phys. Rev., E 1996 5942 5947
, , , ,[18] Phys. Rev., A 1990 7483 7486
,[19] Acta Phys. Pol., B 2007 1847 1854
,[20] I. Podlubny. Fractional differential equations. Academic Press, San Diego, 1999.
[21] J. Crank. The mathematics of diffusion. Clarendon Press, Oxford, 1975.
[22] J. Phys., A 2004 10779 10789
[23] Phys. Rev., E 2012
, ,[24] Acta Phys. Pol., B 2012 1065 1071
, ,[25] K.D. Lewandowska, T. Kosztołowicz. Time evolution of the reaction front in a subdiffusive system. In: Noise and fluctuations, 2007, edited by M. Tacano, Y. Yamamoto, M. Nakao. American Institute of Physics, Melville, 2007.
Cité par Sources :