Voir la notice de l'article provenant de la source EDP Sciences
T. Kosztołowicz 1 ; K. D. Lewandowska 2
@article{10_1051_mmnp_20138204,
author = {T. Koszto{\l}owicz and K. D. Lewandowska},
title = {Application of {Fractional} {Differential} {Equations} in {Modelling} the {Subdiffusion{\textendash}Reaction} {Process}},
journal = {Mathematical modelling of natural phenomena},
pages = {44--54},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2013},
doi = {10.1051/mmnp/20138204},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/}
}
TY - JOUR AU - T. Kosztołowicz AU - K. D. Lewandowska TI - Application of Fractional Differential Equations in Modelling the Subdiffusion–Reaction Process JO - Mathematical modelling of natural phenomena PY - 2013 SP - 44 EP - 54 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/ DO - 10.1051/mmnp/20138204 LA - en ID - 10_1051_mmnp_20138204 ER -
%0 Journal Article %A T. Kosztołowicz %A K. D. Lewandowska %T Application of Fractional Differential Equations in Modelling the Subdiffusion–Reaction Process %J Mathematical modelling of natural phenomena %D 2013 %P 44-54 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138204/ %R 10.1051/mmnp/20138204 %G en %F 10_1051_mmnp_20138204
T. Kosztołowicz; K. D. Lewandowska. Application of Fractional Differential Equations in Modelling the Subdiffusion–Reaction Process. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 44-54. doi: 10.1051/mmnp/20138204
[1] , Phys. Rep. 2000 1 77
[2] , J. Phys., A 2004 R161 R208
[3] , , Phys. Rev. Lett. 2005
[4] , , Phys. Rev., E 2005
[5] , , J. Chem. Phys. 2003 7525 7533
[6] , , Reaction front in an A + B → C reaction–subdiffusion process Phys. Rev., E 2004
[7] , Phys. Rev., E 2008
[8] D. ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, 2000.
[9] V. Méndez, S. Fedotov, W. Horsthemke. Reaction–Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer-Verlag, Berlin, 2010.
[10] The long–time behavior of initially separated A + B → 0 reaction–diffusion systems with arbitrary diffusion constants J. Stat. Phys. 1996 179 191
[11] The long–time behaviour of initially separated A + B(static) → 0 reaction–diffusion systems Physica, A 1997 622 634
[12] , Physica, D 2000 95 121
[13] , Properties of the reaction front in an A + B → C type reaction–diffusion process Phys. Rev., A 1988 3151 3154
[14] , , Dynamic Multiscaling of the Reaction–Diffusion Front for mA + nB → 0 Phys. Rev., E 1995 3500 3505
[15] , Physica, A 2012 2608 2616
[16] , , , , Exotic Behavior of the Reaction Front in the A + B → C Reaction-Diffusion System Phys. Rev., A 1992 2151 2154
[17] , , , , Effects of bias on the kinetics of A + B → C with initially separated reactants Phys. Rev., E 1996 5942 5947
[18] , Phys. Rev., A 1990 7483 7486
[19] , Acta Phys. Pol., B 2007 1847 1854
[20] I. Podlubny. Fractional differential equations. Academic Press, San Diego, 1999.
[21] J. Crank. The mathematics of diffusion. Clarendon Press, Oxford, 1975.
[22] J. Phys., A 2004 10779 10789
[23] , , Phys. Rev., E 2012
[24] , , Acta Phys. Pol., B 2012 1065 1071
[25] K.D. Lewandowska, T. Kosztołowicz. Time evolution of the reaction front in a subdiffusive system. In: Noise and fluctuations, 2007, edited by M. Tacano, Y. Yamamoto, M. Nakao. American Institute of Physics, Melville, 2007.
Cité par Sources :