Voir la notice de l'article provenant de la source EDP Sciences
C. N. Angstmann 1 ; I. C. Donnelly 1 ; B. I. Henry 1
@article{MMNP_2013_8_2_a1, author = {C. N. Angstmann and I. C. Donnelly and B. I. Henry}, title = {Continuous {Time} {Random} {Walks} with {Reactions} {Forcing} and {Trapping}}, journal = {Mathematical modelling of natural phenomena}, pages = {17--27}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2013}, doi = {10.1051/mmnp/20138202}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138202/} }
TY - JOUR AU - C. N. Angstmann AU - I. C. Donnelly AU - B. I. Henry TI - Continuous Time Random Walks with Reactions Forcing and Trapping JO - Mathematical modelling of natural phenomena PY - 2013 SP - 17 EP - 27 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138202/ DO - 10.1051/mmnp/20138202 LA - en ID - MMNP_2013_8_2_a1 ER -
%0 Journal Article %A C. N. Angstmann %A I. C. Donnelly %A B. I. Henry %T Continuous Time Random Walks with Reactions Forcing and Trapping %J Mathematical modelling of natural phenomena %D 2013 %P 17-27 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138202/ %R 10.1051/mmnp/20138202 %G en %F MMNP_2013_8_2_a1
C. N. Angstmann; I. C. Donnelly; B. I. Henry. Continuous Time Random Walks with Reactions Forcing and Trapping. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 17-27. doi : 10.1051/mmnp/20138202. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138202/
[1] Annalen der Physik 1914 810 820
[2] M. Planck, Sitzber. Preu. Akad. Wiss., (1917), p. 324.
[3] H. Risken. The Fokker-Planck equation: Methods of solution and applications. Second Edition., vol. 18. Springer Verlag, 1996.
[4] Phys. Rev. E 2000 132
, ,[5] Phys. Rev. Lett. 2006 140602
,[6] Phys. Rev. Lett. 2008 210601
, ,[7] Phys. Rev. Lett. 2010 170602
, ,[8] Phys. Rev. E 2008 036704
, ,[9] M. G. Hahn, K. Kobayashi, S. Umarov. Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Amer. Math. Soc., (2011), pp. 691-705.
[10] J. Exp. Theor. Phys. 2012 830
[11] Physica A 2000 448 455
,[12] Phys. Rev. E 2006 031116
, ,[13] Phys. Rev. E 2006 031102
, ,[14] Phys. Rev. E 2008 021111
, ,[15] Phys. Rev. E 2010 011117
[16] Phys. Rev. E 2010 031115
, ,[17] Phys. Rev. Lett. 2005 240602
,[18] Phys. Rev. Lett. 2009 180602
, , ,[19] Phys. Rev. E 2009 011112
,[20] Proc. Natl. Acad. Sci. 2011 6438 6443
, , ,[21] Phys. Rev. E 2010 051102
,[22] Phys. Rev. E 2011 021110
[23] Ann. Phys. 2011 2517 2531
,[24] Biophysical journal 2005 2266
, , , , ,[25] European Journal of Neuroscience 2011 561 568
, , ,[26] Biophysical journal 1996 1250 1262
[27] J. Fluoresc. 2010 19 26
,[28] Phys. Rev. Lett. 2011 48103
, , , , , , ,[29] Neuron 2006 635 648
, , ,[30] Eur. J. Neurosci. 2011 561 568
, , ,[31] Phys. Rev. Lett. 2008 128103
, ,[32] J. Math. Biol., vol. 2009 761 808
, ,[33] SIAM J. Appl. Math. 2011 1168 1203
, ,[34] Biophys. J. 2008 4646 4653
,[35] Moscow Univ. Bull. Math 1937 1 25
, ,[36] Ann. Hum. Genet. 1937 355 369
[37] D. Ben-Avraham, S. Havlin. Diffusion and reactions in fractals and disordered systems. Cambridge University Press, 2000.
[38] Phys. Rev. E 2002 061908
,[39] Phys. Rev. E 2012 032804
, ,[40] Phys. Rev. E 2012 031132
,[41] Phys. Rev. B 1973 4491 4502
,[42] Phys. Rev. E 2006 066118
,[43] J. Phys. A 2005 L679
, ,[44] Rev. Geophys. 2006 RG2003
, , ,[45] Fractals 2003 281 289
, , ,[46] The Amer. Math. Monthly 1938 265
Cité par Sources :