Inverse Stable Subordinators
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 1-16.

Voir la notice de l'article provenant de la source EDP Sciences

The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled.
DOI : 10.1051/mmnp/20138201

M. M. Meerschaert 1 ; P. Straka 2

1 Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824
2 School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom
@article{MMNP_2013_8_2_a0,
     author = {M. M. Meerschaert and P. Straka},
     title = {Inverse {Stable} {Subordinators}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     doi = {10.1051/mmnp/20138201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138201/}
}
TY  - JOUR
AU  - M. M. Meerschaert
AU  - P. Straka
TI  - Inverse Stable Subordinators
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 1
EP  - 16
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138201/
DO  - 10.1051/mmnp/20138201
LA  - en
ID  - MMNP_2013_8_2_a0
ER  - 
%0 Journal Article
%A M. M. Meerschaert
%A P. Straka
%T Inverse Stable Subordinators
%J Mathematical modelling of natural phenomena
%D 2013
%P 1-16
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138201/
%R 10.1051/mmnp/20138201
%G en
%F MMNP_2013_8_2_a0
M. M. Meerschaert; P. Straka. Inverse Stable Subordinators. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 1-16. doi : 10.1051/mmnp/20138201. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138201/

[1] W. Arendt, C. J. K. Batty, M. Hieber,F. Neubrander. Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics 96, Birkhäuser Verlag, Basel, 2001.

[2] B. Baeumer, M. M. Meerschaert Fract. Calc. Appl. Anal. 2001 481 500

[3] E. Barkai, R. Metzler, J. Klafter Phys. Rev. E 2000 132

[4] D.A. Benson, M.M. Meerschaert Adv. Water Resour. 2009 532 539

[5] B. Berkowitz, A. Cortis, M. Dentz, H. Scher Rev. Geophys. 2006 1 49

[6] N. H. Bingham Z. Wahrsch. verw. Geb. 1971 1 22

[7] R. Durrett. Probability: Theory and Examples. Cambridge University Press, New York, 2010.

[8] A. Einstein Ann. Phys. 1905 549 560

[9] W. Feller. An Introduction to Probability Theory and Its Applications. 2nd ed., Wiley, New York, 1971.

[10] M. G Hahn, K. Kobayashi, S. Umarov Proc. Amer. Math. Soc. 2011 691 705

[11] N. Jacob. Pseudo differential operators and Markov processes. Vol. I. Imperial College Press, London, 2001.

[12] A. N. Kochubei Diff. Eq. 1989 967 974

[13] A. N. Kochubei Diff. Eq. 1990 485 492

[14] V. N. Kolokoltsov Th. Prob. Appl. 2009 594

[15] R.L. Magin. Fractional Calculus in Bioengineering. Begell House, 2006.

[16] M. Magdziarz, A. Weron Phys. Rev. E 2007 056702

[17] F. Mainardi. Fractals and fractional calculus in continuum mechanics. Springer Verlag, 1997.

[18] F. Mainardi, R. Gorenflo J. Comput. Appl. Math. 2000 283 299

[19] J. Masoliver, M. Montero, J. Perelló, G.H. Weiss, J. Perello J. Econ. Behav. Org. 2006 577 598

[20] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[21] R. Metzler, J. Klafter J. Phys. A: Math. Gen. 2004 R161 R208

[22] M. M. Meerschaert, H.-P. Scheffler. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, New York, 2001.

[23] M. M. Meerschaert, H.-P. Scheffler, P. Kern J. Appl. Probab. 2004 455 466

[24] M. M. Meerschaert, H.-P. Scheffler Stoch. Proc. Appl. 2008 1606 1633

[25] M. M. Meerschaert, E. Nane, P. Vellaisamy Ann. Probab. 2009 979 1007

[26] M. M. Meerschaert, A. Sikorskii. Stochastic Models for Fractional Calculus. De Gruyter, Berlin, 2012.

[27] R. Metzler, E. Barkai, J. Klafter Europhys. Lett. 1999 431 436

[28] E. Montroll, G. Weiss J. Math Phys. 1965 167 181

[29] R. R. Nigmatullin Phys. Status Solidi B 1986 425 430

[30] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.

[31] A. Piryatinska, A. I. Saichev, W. Woyczynski Phys. A 2005 375 420

[32] I. Podlubny. Fractional differential equations, Academic press, 1999.

[33] R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010.

[34] J. Sabatier, O.P. Agrawal, J.A.T. Machado. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, 2007.

[35] S. G. Samko, A. A. Kilbas, O. I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London, 1993.

[36] E. Scalas Complex Netw. Econ. Inter. 2006 3 16

[37] A.I. Saichev, W.A. Woyzczynski. Distributions in the Physical and Engineering Sciences: Distributional and Fractal Calculus, Integral Transforms, and Wavelets. Birkhäuser, 1997.

[38] A.I. Saichev, G.M. Zaslavsky Chaos 1997 753 764

[39] H. Scher, M. Lax Phys. Rev. B 1973 4491 4502

[40] W. R. Schneider, W. Wyss J. Math. Phys. 1989 134 144

[41] I. N. Sneddon. Fourier Transforms. Dover, New York, 1995.

[42] I. Stakgold, M. J. Holst. Green’s functions and boundary value problems. Wiley, New York, 1998.

[43] V. V. Uchaikin, V. M. Zolotarev. Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht, 1999.

[44] G. Zaslavsky Phys. D 1994 110 122

[45] Y. Zhang, D. Benson, M. M. Meerschaert, H. Scheffler J. Stat. Phys. 2006 89 110

[46] V. Zolotarev. One-dimensional Stable Distributions. Translations of Mathematical Monographs 65, American Mathematical Society, Providence, RI, 1986.

Cité par Sources :