Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_1_a17, author = {M. Ruzhansky}, title = {An {Open} {Problem} in {Complex} {Analytic} {Geometry} {Arising} in {Harmonic} {Analysis}}, journal = {Mathematical modelling of natural phenomena}, pages = {230--236}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138118}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/} }
TY - JOUR AU - M. Ruzhansky TI - An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis JO - Mathematical modelling of natural phenomena PY - 2013 SP - 230 EP - 236 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/ DO - 10.1051/mmnp/20138118 LA - en ID - MMNP_2013_8_1_a17 ER -
%0 Journal Article %A M. Ruzhansky %T An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis %J Mathematical modelling of natural phenomena %D 2013 %P 230-236 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/ %R 10.1051/mmnp/20138118 %G en %F MMNP_2013_8_1_a17
M. Ruzhansky. An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 230-236. doi : 10.1051/mmnp/20138118. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/
[1] J. J. Duistermaat, Fourier integral operators. Birkhäuser, Boston, 1996.
[2] S. Łojasiewicz. Introduction to complex analytic geometry. Birkhäuser, Basel, 1991.
[3] Studia Math. 2010 207 219
[4] Math. Ann. 1957 328 370
[5] Arch. Math. 1999 68 76
[6] Russian Math. Surveys 2000 353 354
[7] Russian Math. Surveys 2000 93 161
[8] M. Ruzhansky. Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations. CWI Tracts , vol. 131, 2001.
[9] Proc. Amer. Math. Soc. 2002 1371 1376
[10] Ann. of Math. 1991 231 251
, ,Cité par Sources :