An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 230-236
Voir la notice de l'article provenant de la source EDP Sciences
In this paper, an open problem in the multidimensional complex analysis is presented that arises in the harmonic analysis related to the investigation of the regularity properties of Fourier integral operators and in the regularity theory for hyperbolic partial differential equations. The problem is discussed in a self-contained elementary way and some results towards its resolution are presented. A conjecture concerning the structure of appearing affine fibrations is formulated.
@article{10_1051_mmnp_20138118,
author = {M. Ruzhansky},
title = {An {Open} {Problem} in {Complex} {Analytic} {Geometry} {Arising} in {Harmonic} {Analysis}},
journal = {Mathematical modelling of natural phenomena},
pages = {230--236},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2013},
doi = {10.1051/mmnp/20138118},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/}
}
TY - JOUR AU - M. Ruzhansky TI - An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis JO - Mathematical modelling of natural phenomena PY - 2013 SP - 230 EP - 236 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/ DO - 10.1051/mmnp/20138118 LA - en ID - 10_1051_mmnp_20138118 ER -
%0 Journal Article %A M. Ruzhansky %T An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis %J Mathematical modelling of natural phenomena %D 2013 %P 230-236 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/ %R 10.1051/mmnp/20138118 %G en %F 10_1051_mmnp_20138118
M. Ruzhansky. An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 230-236. doi: 10.1051/mmnp/20138118
[1] J. J. Duistermaat, Fourier integral operators. Birkhäuser, Boston, 1996.
[2] S. Łojasiewicz. Introduction to complex analytic geometry. Birkhäuser, Basel, 1991.
[3] Studia Math. 2010 207 219
[4] Math. Ann. 1957 328 370
[5] Arch. Math. 1999 68 76
[6] Russian Math. Surveys 2000 353 354
[7] Russian Math. Surveys 2000 93 161
[8] M. Ruzhansky. Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations. CWI Tracts , vol. 131, 2001.
[9] Proc. Amer. Math. Soc. 2002 1371 1376
[10] , , Ann. of Math. 1991 231 251
Cité par Sources :