An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 230-236.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, an open problem in the multidimensional complex analysis is presented that arises in the harmonic analysis related to the investigation of the regularity properties of Fourier integral operators and in the regularity theory for hyperbolic partial differential equations. The problem is discussed in a self-contained elementary way and some results towards its resolution are presented. A conjecture concerning the structure of appearing affine fibrations is formulated.
DOI : 10.1051/mmnp/20138118

M. Ruzhansky 1

1 Department of Mathematics, Imperial College London 180 Queen’s Gate, London SW7 2AZ, United Kingdom
@article{MMNP_2013_8_1_a17,
     author = {M. Ruzhansky},
     title = {An {Open} {Problem} in {Complex} {Analytic} {Geometry} {Arising} in {Harmonic} {Analysis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {230--236},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/}
}
TY  - JOUR
AU  - M. Ruzhansky
TI  - An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 230
EP  - 236
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/
DO  - 10.1051/mmnp/20138118
LA  - en
ID  - MMNP_2013_8_1_a17
ER  - 
%0 Journal Article
%A M. Ruzhansky
%T An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis
%J Mathematical modelling of natural phenomena
%D 2013
%P 230-236
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/
%R 10.1051/mmnp/20138118
%G en
%F MMNP_2013_8_1_a17
M. Ruzhansky. An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 230-236. doi : 10.1051/mmnp/20138118. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138118/

[1] J. J. Duistermaat, Fourier integral operators. Birkhäuser, Boston, 1996.

[2] S. Łojasiewicz. Introduction to complex analytic geometry. Birkhäuser, Basel, 1991.

[3] F. Nicola Studia Math. 2010 207 219

[4] R. Remmert Math. Ann. 1957 328 370

[5] M. Ruzhansky Arch. Math. 1999 68 76

[6] M. Ruzhansky Russian Math. Surveys 2000 353 354

[7] M. Ruzhansky Russian Math. Surveys 2000 93 161

[8] M. Ruzhansky. Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations. CWI Tracts , vol. 131, 2001.

[9] M. Ruzhansky Proc. Amer. Math. Soc. 2002 1371 1376

[10] A. Seeger, C. D. Sogge, E. .M. Stein Ann. of Math. 1991 231 251

Cité par Sources :