Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 215-229.

Voir la notice de l'article provenant de la source EDP Sciences

Stockwell transforms as hybrids of Gabor transforms and wavelet transforms have been studied extensively. We introduce in this paper multi-dimensional Stockwell transforms that include multi-dimensional Gabor transforms as special cases. Continuous inversion formulas for multi-dimensional Stockwell transforms are proved.
DOI : 10.1051/mmnp/20138117

L. Riba 1 ; M W. Wong 2

1 Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino, Italy
2 Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
@article{MMNP_2013_8_1_a16,
     author = {L. Riba and M W. Wong},
     title = {Continuous {Inversion} {Formulas} for {Multi-Dimensional} {Stockwell} {Transforms}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {215--229},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/}
}
TY  - JOUR
AU  - L. Riba
AU  - M W. Wong
TI  - Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 215
EP  - 229
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/
DO  - 10.1051/mmnp/20138117
LA  - en
ID  - MMNP_2013_8_1_a16
ER  - 
%0 Journal Article
%A L. Riba
%A M W. Wong
%T Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms
%J Mathematical modelling of natural phenomena
%D 2013
%P 215-229
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/
%R 10.1051/mmnp/20138117
%G en
%F MMNP_2013_8_1_a16
L. Riba; M W. Wong. Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 215-229. doi : 10.1051/mmnp/20138117. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/

[1] J.-P. Antoine, R. Murenzi, P. Vandergheynst, S. T. Ali. Two-Dimensional Wavelets and their Relatives. Cambridge University Press, 2004.

[2] L. Cohen. Time-Frequency Analysis. Prentice Hall, 1995.

[3] E. Cordero, F. De Mari, K. Nowak, A. Tabacco J. Fourier Anal. Appl. 2006 157 180

[4] A. Cordoba, C. Fefferman Comm. Partial Differential Equations 1978 979 1005

[5] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[6] M. G. Eramian, R. A. Schincariol, L. Mansinha, R. G. Stockwell Math. Geology 1999 327 348

[7] G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, 1989.

[8] B. G. Goodyear, H. Zhu, R. A. Brown, J. R. Mitchell Magn. Reson. Med. 2004 16 21

[9] A. Grossmann, J. Morlet SIAM J. Math. Anal. 1984 723 736

[10] Q. Guo, S. Molahajloo, M. W. Wong. Modified Stockwell transforms and time-frequency analysis in New Developments in Pseudo-Differential Operators. Operator Theory : Advances and Applications 189, Birkhäuser, 2009, 275–285.

[11] Q. Guo, M. W. Wong Matematiche e Naturali, Serie V 2008 3 20

[12] Y. Liu and M. W. Wong. Inversion formulas for two-dimensional Stockwell transforms, in Pseudo-Differential Operators : Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications 52, American Mathematical Society, 2007, 323–330.

[13] R. G. Stockwell, L. Mansinha, R. P. Lowe IEEE Trans. Signal Processing 1996 998 1001

[14] D. Bernier, K. F. Taylor SIAM J. Math. Anal. 1996 594 608

[15] M. W. Wong. Weyl Transforms. Springer, 1998.

[16] M. W. Wong. Wavelet Transforms and Localization Operators. Birkhäuser, 2002.

[17] M. W. Wong, H. Zhu. A characterization of the Stockwell spectrum, in Modern Trends in Pseudo-Differential Operators. Birkhäuser, 2007, 251–257.

[18] H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, L. Mansinha, A. G. Law, J. R. Mitchell Med. Phys. 2003 1134 1141

Cité par Sources :