Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_1_a16, author = {L. Riba and M W. Wong}, title = {Continuous {Inversion} {Formulas} for {Multi-Dimensional} {Stockwell} {Transforms}}, journal = {Mathematical modelling of natural phenomena}, pages = {215--229}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138117}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/} }
TY - JOUR AU - L. Riba AU - M W. Wong TI - Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms JO - Mathematical modelling of natural phenomena PY - 2013 SP - 215 EP - 229 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/ DO - 10.1051/mmnp/20138117 LA - en ID - MMNP_2013_8_1_a16 ER -
%0 Journal Article %A L. Riba %A M W. Wong %T Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms %J Mathematical modelling of natural phenomena %D 2013 %P 215-229 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/ %R 10.1051/mmnp/20138117 %G en %F MMNP_2013_8_1_a16
L. Riba; M W. Wong. Continuous Inversion Formulas for Multi-Dimensional Stockwell Transforms. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 215-229. doi : 10.1051/mmnp/20138117. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138117/
[1] J.-P. Antoine, R. Murenzi, P. Vandergheynst, S. T. Ali. Two-Dimensional Wavelets and their Relatives. Cambridge University Press, 2004.
[2] L. Cohen. Time-Frequency Analysis. Prentice Hall, 1995.
[3] J. Fourier Anal. Appl. 2006 157 180
, , ,[4] Comm. Partial Differential Equations 1978 979 1005
,[5] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
[6] Math. Geology 1999 327 348
, , ,[7] G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, 1989.
[8] Magn. Reson. Med. 2004 16 21
, , ,[9] SIAM J. Math. Anal. 1984 723 736
,[10] Q. Guo, S. Molahajloo, M. W. Wong. Modified Stockwell transforms and time-frequency analysis in New Developments in Pseudo-Differential Operators. Operator Theory : Advances and Applications 189, Birkhäuser, 2009, 275–285.
[11] Matematiche e Naturali, Serie V 2008 3 20
,[12] Y. Liu and M. W. Wong. Inversion formulas for two-dimensional Stockwell transforms, in Pseudo-Differential Operators : Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications 52, American Mathematical Society, 2007, 323–330.
[13] IEEE Trans. Signal Processing 1996 998 1001
, ,[14] SIAM J. Math. Anal. 1996 594 608
,[15] M. W. Wong. Weyl Transforms. Springer, 1998.
[16] M. W. Wong. Wavelet Transforms and Localization Operators. Birkhäuser, 2002.
[17] M. W. Wong, H. Zhu. A characterization of the Stockwell spectrum, in Modern Trends in Pseudo-Differential Operators. Birkhäuser, 2007, 251–257.
[18] Med. Phys. 2003 1134 1141
, , , , , , ,Cité par Sources :