Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 207-214.

Voir la notice de l'article provenant de la source EDP Sciences

Let L be a linear, closed, densely defined in a Hilbert space operator, not necessarily selfadjoint. Consider the corresponding wave equations \begin{eqnarray} (1) \quad \ddot{w}+ Lw=0, \quad w(0)=0,\quad \dot{w}(0)=f, \quad \dot{w}=\frac{dw}{dt}, \quad f \in H. \\ (2) \quad \ddot{u}+Lu=f e^{-ikt}, \quad u(0)=0, \quad \dot{u}(0)=0, \end{eqnarray} ( 1 )   ¨ w + Lw = 0 ,   w ( 0 ) = 0 ,   ẇ ( 0 ) = f,   ẇ = dw dt ,   f ∈ H . ( 2 )   ¨ u + Lu = f e − ikt ,   u ( 0 ) = 0 ,   u̇ ( 0 ) = 0 , where k > 0 is a constant. Necessary and sufficient conditions are given for the operator L not to have eigenvalues in the half-plane Rez  0 and not to have a positive eigenvalue at a given point kd2 > 0. These conditions are given in terms of the large-time behavior of the solutions to problem (1) for generic f.Sufficient conditions are given for the validity of a version of the limiting amplitude principle for the operator L.A relation between the limiting amplitude principle and the limiting absorption principle is established.
DOI : 10.1051/mmnp/20138116

A. G. Ramm 1

1 Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA
@article{MMNP_2013_8_1_a15,
     author = {A. G. Ramm},
     title = {Spectral {Properties} of {Schr\"odinger-type} {Operators} and {Large-time} {Behavior} of the {Solutions} to the {Corresponding} {Wave} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {207--214},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 207
EP  - 214
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/
DO  - 10.1051/mmnp/20138116
LA  - en
ID  - MMNP_2013_8_1_a15
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation
%J Mathematical modelling of natural phenomena
%D 2013
%P 207-214
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/
%R 10.1051/mmnp/20138116
%G en
%F MMNP_2013_8_1_a15
A. G. Ramm. Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 207-214. doi : 10.1051/mmnp/20138116. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/

[1] D. Eidus Russ. Math. Surveys 1969 51 94

[2] D. Pearson. Quantum scattering and spectral theory. Acad. Press, London, 1988.

[3] A.G. Ramm Doklady Acad of Sci. USSR 1963 282 285

[4] A.G. Ramm Mat. Sborn. 1965 321 343

[5] A.G. Ramm J. Math. Phys. 1987 1341 1343

[6] A.G. Ramm J. Math. Phys. 1988 1431 1432

[7] A.G. Ramm Doklady Acad. Sci. USSR. 1970 50 53

[8] A.G. Ramm. Scattering by obstacles. D. Reidel, Dordrecht, 1986.

[9] A.G. Ramm Chaotic Modeling and Simulation (CMSIM) 2011 17 27

[10] A.G. Ramm. Inverse problems. Springer, New York, 2005.

[11] M. Schechter. Operator methods in quantum mechanics. North Holland, New York, 1981.

Cité par Sources :