Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_1_a15, author = {A. G. Ramm}, title = {Spectral {Properties} of {Schr\"odinger-type} {Operators} and {Large-time} {Behavior} of the {Solutions} to the {Corresponding} {Wave} {Equation}}, journal = {Mathematical modelling of natural phenomena}, pages = {207--214}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138116}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/} }
TY - JOUR AU - A. G. Ramm TI - Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation JO - Mathematical modelling of natural phenomena PY - 2013 SP - 207 EP - 214 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/ DO - 10.1051/mmnp/20138116 LA - en ID - MMNP_2013_8_1_a15 ER -
%0 Journal Article %A A. G. Ramm %T Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation %J Mathematical modelling of natural phenomena %D 2013 %P 207-214 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/ %R 10.1051/mmnp/20138116 %G en %F MMNP_2013_8_1_a15
A. G. Ramm. Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 207-214. doi : 10.1051/mmnp/20138116. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/
[1] Russ. Math. Surveys 1969 51 94
[2] D. Pearson. Quantum scattering and spectral theory. Acad. Press, London, 1988.
[3] Doklady Acad of Sci. USSR 1963 282 285
[4] Mat. Sborn. 1965 321 343
[5] J. Math. Phys. 1987 1341 1343
[6] J. Math. Phys. 1988 1431 1432
[7] Doklady Acad. Sci. USSR. 1970 50 53
[8] A.G. Ramm. Scattering by obstacles. D. Reidel, Dordrecht, 1986.
[9] Chaotic Modeling and Simulation (CMSIM) 2011 17 27
[10] A.G. Ramm. Inverse problems. Springer, New York, 2005.
[11] M. Schechter. Operator methods in quantum mechanics. North Holland, New York, 1981.
Cité par Sources :