Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 207-214
Voir la notice de l'article provenant de la source EDP Sciences
Let L be a linear, closed, densely defined in a Hilbert space operator, not necessarily selfadjoint. Consider the corresponding wave equations \begin{eqnarray} (1) \quad \ddot{w}+ Lw=0, \quad w(0)=0,\quad \dot{w}(0)=f, \quad \dot{w}=\frac{dw}{dt}, \quad f \in H. \\ (2) \quad \ddot{u}+Lu=f e^{-ikt}, \quad u(0)=0, \quad \dot{u}(0)=0, \end{eqnarray} ( 1 ) ¨ w + Lw = 0 , w ( 0 ) = 0 , ẇ ( 0 ) = f, ẇ = dw dt , f ∈ H . ( 2 ) ¨ u + Lu = f e − ikt , u ( 0 ) = 0 , u̇ ( 0 ) = 0 , where k > 0 is a constant. Necessary and sufficient conditions are given for the operator L not to have eigenvalues in the half-plane Rez 0 and not to have a positive eigenvalue at a given point kd2 > 0. These conditions are given in terms of the large-time behavior of the solutions to problem (1) for generic f.Sufficient conditions are given for the validity of a version of the limiting amplitude principle for the operator L.A relation between the limiting amplitude principle and the limiting absorption principle is established.
@article{10_1051_mmnp_20138116,
author = {A. G. Ramm},
title = {Spectral {Properties} of {Schr\"odinger-type} {Operators} and {Large-time} {Behavior} of the {Solutions} to the {Corresponding} {Wave} {Equation}},
journal = {Mathematical modelling of natural phenomena},
pages = {207--214},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2013},
doi = {10.1051/mmnp/20138116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/}
}
TY - JOUR AU - A. G. Ramm TI - Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation JO - Mathematical modelling of natural phenomena PY - 2013 SP - 207 EP - 214 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/ DO - 10.1051/mmnp/20138116 LA - en ID - 10_1051_mmnp_20138116 ER -
%0 Journal Article %A A. G. Ramm %T Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation %J Mathematical modelling of natural phenomena %D 2013 %P 207-214 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138116/ %R 10.1051/mmnp/20138116 %G en %F 10_1051_mmnp_20138116
A. G. Ramm. Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 207-214. doi: 10.1051/mmnp/20138116
[1] Russ. Math. Surveys 1969 51 94
[2] D. Pearson. Quantum scattering and spectral theory. Acad. Press, London, 1988.
[3] Doklady Acad of Sci. USSR 1963 282 285
[4] Mat. Sborn. 1965 321 343
[5] J. Math. Phys. 1987 1341 1343
[6] J. Math. Phys. 1988 1431 1432
[7] Doklady Acad. Sci. USSR. 1970 50 53
[8] A.G. Ramm. Scattering by obstacles. D. Reidel, Dordrecht, 1986.
[9] Chaotic Modeling and Simulation (CMSIM) 2011 17 27
[10] A.G. Ramm. Inverse problems. Springer, New York, 2005.
[11] M. Schechter. Operator methods in quantum mechanics. North Holland, New York, 1981.
Cité par Sources :