Heat Transfer in a Medium in Which Many Small Particles Are Embedded
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 193-199.

Voir la notice de l'article provenant de la source EDP Sciences

The heat equation is considered in the complex system consisting of many small bodies (particles) embedded in a given material. On the surfaces of the small bodies a Newton-type boundary condition is imposed. An equation for the limiting field is derived when the characteristic size a of the small bodies tends to zero, their total number tends to infinity at a suitable rate, and the distance d = d(a) between neighboring small bodies tends to zero a    d. No periodicity is assumed about the distribution of the small bodies.
DOI : 10.1051/mmnp/20138114

A. G. Ramm 1

1 Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA
@article{MMNP_2013_8_1_a13,
     author = {A. G. Ramm},
     title = {Heat {Transfer} in a {Medium} in {Which} {Many} {Small} {Particles} {Are} {Embedded}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138114/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Heat Transfer in a Medium in Which Many Small Particles Are Embedded
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 193
EP  - 199
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138114/
DO  - 10.1051/mmnp/20138114
LA  - en
ID  - MMNP_2013_8_1_a13
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Heat Transfer in a Medium in Which Many Small Particles Are Embedded
%J Mathematical modelling of natural phenomena
%D 2013
%P 193-199
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138114/
%R 10.1051/mmnp/20138114
%G en
%F MMNP_2013_8_1_a13
A. G. Ramm. Heat Transfer in a Medium in Which Many Small Particles Are Embedded. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 193-199. doi : 10.1051/mmnp/20138114. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138114/

[1] V. Jikov, S. Kozlov, O. Oleinik. Homogenization of differential operators and integral functionals. Springer, Berlin, 1994.

[2] V. Marchenko, E. Khruslov. Homogenization of partial differential equations. Birkhäuser, Boston, 2006.

[3] D. Gioranescu, P. Donato. An introduction to homogenization. Oxford Univ. Press, Oxford, 1999.

[4] A. Bensoussan, J.-L.Lions, G. Papanicolau. Asymptotic analysis for periodic structures. AMS Chelsea Publishing, Providence, RI, 2011.

[5] A. G. Ramm. Wave scattering by small bodies of arbitrary shapes. World Sci. Publishers, Singapore, 2005.

[6] A.G. Ramm. Inverse problems. Springer, New York, 2005.

[7] A.G. Ramm Afrika Matematika 2011 33 55

[8] A.G. Ramm Internat. Journ. Comp. Sci and Math. 2009 222 228

[9] A.G. Ramm Inverse problems 1986 L55 59

[10] A.G. Ramm, S. Indratno. Inversion of the Laplace transform from the real axis using an adaptive iterative method. Internat. Jour. Math. Math. Sci (IJMMS). Vol. 2009, Article 898195, 38 pages.

[11] A.G. Ramm J. Math. Phys. 1987 1341 1343

[12] A.G. Ramm J. Math. Phys. 1988 1431 1432

[13] A.G. Ramm J. Math. Phys. 2007 103511

[14] A.G. Ramm Phys. Lett. A 2008 3064 3070

[15] A.G. Ramm Internat. Journ. Mod. Phys B 2010 5261 5268

[16] A.G. Ramm International Journal of Structural Changes in Solids (IJSCS) 2010 17 23

[17] A.G. Ramm Jour. Stat. Phys. 2007 915 934

[18] A.G. Ramm AIP Advances 2011 022135

[19] A.G. Ramm Results in Physics 2011 13 16

Cité par Sources :