Derivatives of Lp Eigenfunctions of Schrödinger Operators
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 170-174
Voir la notice de l'article provenant de la source EDP Sciences
Assuming the negative part of the potential is uniformly locally L1, we prove a pointwise Lp estimate on derivatives of eigenfunctions of one-dimensional Schrödinger operators. In particular, if an eigenfunction is in Lp, then so is its derivative, for 1 ≤ p ≤ ∞.
@article{10_1051_mmnp_20138112,
author = {M. Lukic},
title = {Derivatives of {Lp} {Eigenfunctions} of {Schr\"odinger} {Operators}},
journal = {Mathematical modelling of natural phenomena},
pages = {170--174},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2013},
doi = {10.1051/mmnp/20138112},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138112/}
}
TY - JOUR AU - M. Lukic TI - Derivatives of Lp Eigenfunctions of Schrödinger Operators JO - Mathematical modelling of natural phenomena PY - 2013 SP - 170 EP - 174 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138112/ DO - 10.1051/mmnp/20138112 LA - en ID - 10_1051_mmnp_20138112 ER -
M. Lukic. Derivatives of Lp Eigenfunctions of Schrödinger Operators. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 170-174. doi: 10.1051/mmnp/20138112
[1] Manuscripta Math. 1991 163 181
[2] , J. Math. Anal. Appl. 1987 30 56
[3] , , Comm. Math. Phys. 1998 1 45
[4] Math. Ann. 1926 499 518
[5] , , Oper. Matrices 2008 417 434
[6] , Proc. Amer. Math. Soc. 1996 2073 2080
[7] Proc. Amer. Math. Soc. 1996 3361 3369
[8] J . Math. Anal. Appl. 1992 210 228
[9] Ann. Inst. H. Poincaré Phys. Théor. 1995 297 314
[10] G. Teschl. Mathematical methods in quantum mechanics with applications to Schrödinger operators. Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009.
Cité par Sources :