Derivatives of Lp Eigenfunctions of Schrödinger Operators
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 170-174.

Voir la notice de l'article provenant de la source EDP Sciences

Assuming the negative part of the potential is uniformly locally L1, we prove a pointwise Lp estimate on derivatives of eigenfunctions of one-dimensional Schrödinger operators. In particular, if an eigenfunction is in Lp, then so is its derivative, for 1 ≤ p ≤ ∞.
DOI : 10.1051/mmnp/20138112

M. Lukic 1

1 Rice University, 6100 Main Street, Mathematics MS 136, Houston, TX 77005, USA
@article{MMNP_2013_8_1_a11,
     author = {M. Lukic},
     title = {Derivatives of {Lp} {Eigenfunctions} of {Schr\"odinger} {Operators}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {170--174},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138112/}
}
TY  - JOUR
AU  - M. Lukic
TI  - Derivatives of Lp Eigenfunctions of Schrödinger Operators
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 170
EP  - 174
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138112/
DO  - 10.1051/mmnp/20138112
LA  - en
ID  - MMNP_2013_8_1_a11
ER  - 
%0 Journal Article
%A M. Lukic
%T Derivatives of Lp Eigenfunctions of Schrödinger Operators
%J Mathematical modelling of natural phenomena
%D 2013
%P 170-174
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138112/
%R 10.1051/mmnp/20138112
%G en
%F MMNP_2013_8_1_a11
M. Lukic. Derivatives of Lp Eigenfunctions of Schrödinger Operators. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 170-174. doi : 10.1051/mmnp/20138112. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138112/

[1] H. Behncke Manuscripta Math. 1991 163 181

[2] D. J. Gilbert, D. B. Pearson J. Math. Anal. Appl. 1987 30 56

[3] A. Kiselev, Y. Last, B. Simon Comm. Math. Phys. 1998 1 45

[4] H. Prüfer Math. Ann. 1926 499 518

[5] M. Schmied, R. Sims, G. Teschl Oper. Matrices 2008 417 434

[6] B. Simon, G. Stolz Proc. Amer. Math. Soc. 1996 2073 2080

[7] B. Simon Proc. Amer. Math. Soc. 1996 3361 3369

[8] G. Stolz J . Math. Anal. Appl. 1992 210 228

[9] G. Stolz Ann. Inst. H. Poincaré Phys. Théor. 1995 297 314

[10] G. Teschl. Mathematical methods in quantum mechanics with applications to Schrödinger operators. Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009.

Cité par Sources :