Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_1_a9, author = {I. M. Karabash}, title = {Nonlinear {Eigenvalue} {Problem} for {Optimal} {Resonances} in {Optical} {Cavities}}, journal = {Mathematical modelling of natural phenomena}, pages = {143--155}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138110}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/} }
TY - JOUR AU - I. M. Karabash TI - Nonlinear Eigenvalue Problem for Optimal Resonances in Optical Cavities JO - Mathematical modelling of natural phenomena PY - 2013 SP - 143 EP - 155 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/ DO - 10.1051/mmnp/20138110 LA - en ID - MMNP_2013_8_1_a9 ER -
%0 Journal Article %A I. M. Karabash %T Nonlinear Eigenvalue Problem for Optimal Resonances in Optical Cavities %J Mathematical modelling of natural phenomena %D 2013 %P 143-155 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/ %R 10.1051/mmnp/20138110 %G en %F MMNP_2013_8_1_a9
I. M. Karabash. Nonlinear Eigenvalue Problem for Optimal Resonances in Optical Cavities. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 143-155. doi : 10.1051/mmnp/20138110. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/
[1] Nature 2003 944 947
, , ,[2] Methods Funct. Anal. Topology 2007 110 123
, ,[3] S. Burger, J. Pomplun, F. Schmidt, L. Zschiedrich. Finite-element method simulations of high-Q nanocavities with 1D photonic bandgap. Proc. SPIE Vol. 7933 (2011), 79330T (Physics and Simulation of Optoelectronic Devices XIX).
[4] Indiana Univ. Math. J. 1995 545 573
,[5] Struct. Multidisc. Optim. 2008 443 456
, , ,[6] Funktsional. Anal. i Prilozhen. 1997 70 74
,[7] I.S. Kac, M.G. Krein. On the spectral functions of the string. Supplement II in Atkinson, F. Discrete and continuous boundary problems. Mir, Moscow, 1968. Engl. transl. : Amer. Math. Soc. Transl., Ser. 2, 103 (1974), 19–102.
[8] Wave Motion 2008 412 427
,[9]
[10] I.M. Karabash. Optimization of quasi-normal eigenvalues for Krein-Nudelman strings. Integral Equations and Operator Theory, DOI : 10.1007/s00020-012-2014-4
[11] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[12] Doklady Akad. Nauk SSSR 1951 11 14
[13] Prikl. Mat. Meh. 1951 323 348
[14] Dokl. Akad. Nauk SSSR 1979 1046 1049
,[15] L.D. Landau, E.M. Lifshitz. Electrodynamics of continuous media. Pergamon, 1984.
[16] Phys. Rev. A 1994 3068 3073
, , ,[17] SIAM J. Matrix Anal. Appl. 1997 793 817
, ,[18] Opt. Express 2008 11095
, ,[19] J. Operator Theory 1997 243 263
[20] Inverse Problems 2001 1831 1845
,[21] M. Reed, B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978.
[22] Appl. Phys. B 1995 233 237
[23] Integral Equations Operator Theory 1997 358 372
[24] Phys. Rev. A 1975 148 158
[25] Nature 2003 839 846
[26] Y. Yamamoto, F. Tassone, H. Cao. Semiconductor cavity quantum electrodynamics. Springer, New York, 2000.
Cité par Sources :