Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20138110,
author = {I. M. Karabash},
title = {Nonlinear {Eigenvalue} {Problem} for {Optimal} {Resonances} in {Optical} {Cavities}},
journal = {Mathematical modelling of natural phenomena},
pages = {143--155},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2013},
doi = {10.1051/mmnp/20138110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/}
}
TY - JOUR AU - I. M. Karabash TI - Nonlinear Eigenvalue Problem for Optimal Resonances in Optical Cavities JO - Mathematical modelling of natural phenomena PY - 2013 SP - 143 EP - 155 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/ DO - 10.1051/mmnp/20138110 LA - en ID - 10_1051_mmnp_20138110 ER -
%0 Journal Article %A I. M. Karabash %T Nonlinear Eigenvalue Problem for Optimal Resonances in Optical Cavities %J Mathematical modelling of natural phenomena %D 2013 %P 143-155 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138110/ %R 10.1051/mmnp/20138110 %G en %F 10_1051_mmnp_20138110
I. M. Karabash. Nonlinear Eigenvalue Problem for Optimal Resonances in Optical Cavities. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 143-155. doi: 10.1051/mmnp/20138110
[1] , , , Nature 2003 944 947
[2] , , Methods Funct. Anal. Topology 2007 110 123
[3] S. Burger, J. Pomplun, F. Schmidt, L. Zschiedrich. Finite-element method simulations of high-Q nanocavities with 1D photonic bandgap. Proc. SPIE Vol. 7933 (2011), 79330T (Physics and Simulation of Optoelectronic Devices XIX).
[4] , Indiana Univ. Math. J. 1995 545 573
[5] , , , Struct. Multidisc. Optim. 2008 443 456
[6] , Funktsional. Anal. i Prilozhen. 1997 70 74
[7] I.S. Kac, M.G. Krein. On the spectral functions of the string. Supplement II in Atkinson, F. Discrete and continuous boundary problems. Mir, Moscow, 1968. Engl. transl. : Amer. Math. Soc. Transl., Ser. 2, 103 (1974), 19–102.
[8] , Wave Motion 2008 412 427
[9]
[10] I.M. Karabash. Optimization of quasi-normal eigenvalues for Krein-Nudelman strings. Integral Equations and Operator Theory, DOI : 10.1007/s00020-012-2014-4
[11] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[12] Doklady Akad. Nauk SSSR 1951 11 14
[13] Prikl. Mat. Meh. 1951 323 348
[14] , Dokl. Akad. Nauk SSSR 1979 1046 1049
[15] L.D. Landau, E.M. Lifshitz. Electrodynamics of continuous media. Pergamon, 1984.
[16] , , , Phys. Rev. A 1994 3068 3073
[17] , , SIAM J. Matrix Anal. Appl. 1997 793 817
[18] , , Opt. Express 2008 11095
[19] J. Operator Theory 1997 243 263
[20] , Inverse Problems 2001 1831 1845
[21] M. Reed, B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978.
[22] Appl. Phys. B 1995 233 237
[23] Integral Equations Operator Theory 1997 358 372
[24] Phys. Rev. A 1975 148 158
[25] Nature 2003 839 846
[26] Y. Yamamoto, F. Tassone, H. Cao. Semiconductor cavity quantum electrodynamics. Springer, New York, 2000.
Cité par Sources :