Nonlinear Whirlpools Versus Harmonic Waves in a Rotating Column of Stratified Fluid
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 122-131.

Voir la notice de l'article provenant de la source EDP Sciences

Propagation of nonlinear baroclinic Kelvin waves in a rotating column of uniformly stratified fluid under the Boussinesq approximation is investigated. The model is constrained by the Kelvin’s conjecture saying that the velocity component normal to the interface between rotating fluid and surrounding medium (e.g. a seashore) is possibly zero everywhere in the domain of fluid motion, not only at the boundary. Three classes of distinctly different exact solutions for the nonlinear model are obtained. The obtained solutions are associated with symmetries of the Boussinesq model. It is shown that one class of the obtained solutions can be visualized as rotating whirlpools along which the pressure deviation from the mean state is zero, is positive inside and negative outside of the whirlpools. The angular velocity is zero at the center of the whirlpools and it is monotonically increasing function of radius of the whirlpools.
DOI : 10.1051/mmnp/20138108

N. H. Ibragimov 1 ; R. N. Ibragimov 2

1 Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden and Research Laboratory “Group analysis of mathematical models in natural sciences, technics and technology” Ufa State Aviation Technical University, 450000 Ufa, Russia
2 Department of Mathematics University of Texas at Brownsville, TX 78520, USA
@article{MMNP_2013_8_1_a7,
     author = {N. H. Ibragimov and R. N. Ibragimov},
     title = {Nonlinear {Whirlpools} {Versus} {Harmonic} {Waves} in a {Rotating} {Column} of {Stratified} {Fluid}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {122--131},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138108/}
}
TY  - JOUR
AU  - N. H. Ibragimov
AU  - R. N. Ibragimov
TI  - Nonlinear Whirlpools Versus Harmonic Waves in a Rotating Column of Stratified Fluid
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 122
EP  - 131
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138108/
DO  - 10.1051/mmnp/20138108
LA  - en
ID  - MMNP_2013_8_1_a7
ER  - 
%0 Journal Article
%A N. H. Ibragimov
%A R. N. Ibragimov
%T Nonlinear Whirlpools Versus Harmonic Waves in a Rotating Column of Stratified Fluid
%J Mathematical modelling of natural phenomena
%D 2013
%P 122-131
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138108/
%R 10.1051/mmnp/20138108
%G en
%F MMNP_2013_8_1_a7
N. H. Ibragimov; R. N. Ibragimov. Nonlinear Whirlpools Versus Harmonic Waves in a Rotating Column of Stratified Fluid. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 122-131. doi : 10.1051/mmnp/20138108. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138108/

[1] A. Ali, H. Kalisch J. Nonlinear Sci. 2012 371 498

[2] S. Balasuriya J. Math. Anal. Appl. 1997 128 150

[3] E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson Geophys. Res. Lett. 1998 939 942

[4] A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press. (1983)

[5] G.J Haltiner, R.T. Williams. Numerical prediction and dynamic meteorology (1980).

[6] P.A. Hsieh Ground Water. 2011 319 323

[7] R.N. Ibragimov, N.H. Ibragimov Ocean Modelling 2010 80 87

[8] N.H. Ibragimov, R.N. Ibragimov. Applications of Lie group analysis in Geophysical Fluid Dynamics. Series on Complexity and Chaos, V2, World Scientific Publishers (2011) .

[9] N.H. Ibragimov, R.N. Ibragimov. Integration by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell. Phys. Lett. A, (2011) 3858-3865.

[10] N.H. Ibragimov, R.N. Ibragimov. Rotationally symmetric internal gravity waves. Int. J. Non-Linear Mech., (2012) 46-52.

[11] E.D. Maloney, D. L. Hartmann Part I : Observations. J. Atmos. Sci. 2001 2545 2558

[12] J.P. Mccreary J. Phys. Oceanogr. 1976 632 645

[13] J.P. Mccreary Phil. Trans. Roy. Soc. London. 1981 385 413

[14] J.P. Mccreary J. Mar. Res. 1984 395 430

[15] D.W. Moore, R.C. Kloosterzeil, W.S. Kessler J. Geophys. Res. 1998 5331 5346

[16] D. Nethery, D. Shankar J. Earth. Syst. Sci. 2007 331 339

[17] L.V. Ovsyannikov. Lectures on the theory of group properties of differential equations. Novosibirsk University press, Novosibirsk, 1966. English transl., ed. Ibragimov, N., ALGA Publications, Karlskrona, 2009.

[18] R.D. Romea, J.S. Allen J. Phys. Oceanogr. 1983 241 1

[19] D.T. Shindell, G.A. Schmidt Res. Lett. 2004 L18209

[20] C. Staquet, J. Sommeria Annu. Rev. Fluid Mech. 2002 559 593

[21] R. Szoeke, R.M. Samelson J. Phys. Oceanogr. 2002 2194 2203

[22] J.M. Wallace, P.V. Hobbs.Atmospheric Science : An Introductory Survey. Academic Press, (1977) Inc. 76–77.

Cité par Sources :