The Construction of Smooth Parseval Frames of Shearlets
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 82-105.

Voir la notice de l'article provenant de la source EDP Sciences

The shearlet representation has gained increasing recognition in recent years as a framework for the efficient representation of multidimensional data. This representation consists of a countable collection of functions defined at various locations, scales and orientations, where the orientations are obtained through the use of shear matrices. While shear matrices offer the advantage of preserving the integer lattice and being more appropriate than rotations for digital implementations, the drawback is that the action of the shear matrices is restricted to cone-shaped regions in the frequency domain. Hence, in the standard construction, a Parseval frame of shearlets is obtained by combining different systems of cone-based shearlets which are projected onto certain subspaces of L2(ℝD) with the consequence that the elements of the shearlet system corresponding to the boundary of the cone regions lose their good spatial localization property. In this paper, we present a new construction yielding smooth Parseval frame of shearlets for L2(ℝD). Specifically, all elements of the shearlet systems obtained from this construction are compactly supported and C∞ in the frequency domain, hence ensuring that the system has also excellent spatial localization.
DOI : 10.1051/mmnp/20138106

K. Guo 1 ; D. Labate 2

1 Department of Mathematics, Missouri State University, Springfield, Missouri 65804, USA
2 Department of Mathematics, University of Houston, Houston, Texas 77204, USA
@article{MMNP_2013_8_1_a5,
     author = {K. Guo and D. Labate},
     title = {The {Construction} of {Smooth} {Parseval} {Frames} of {Shearlets}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {82--105},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138106/}
}
TY  - JOUR
AU  - K. Guo
AU  - D. Labate
TI  - The Construction of Smooth Parseval Frames of Shearlets
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 82
EP  - 105
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138106/
DO  - 10.1051/mmnp/20138106
LA  - en
ID  - MMNP_2013_8_1_a5
ER  - 
%0 Journal Article
%A K. Guo
%A D. Labate
%T The Construction of Smooth Parseval Frames of Shearlets
%J Mathematical modelling of natural phenomena
%D 2013
%P 82-105
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138106/
%R 10.1051/mmnp/20138106
%G en
%F MMNP_2013_8_1_a5
K. Guo; D. Labate. The Construction of Smooth Parseval Frames of Shearlets. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 82-105. doi : 10.1051/mmnp/20138106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138106/

[1] E. J. Candès, L. Demanet Comm. Pure Appl. Math. 2005 1472 1528

[2] E. J. Candès, L. Demanet, D. Donoho, L. Ying Multiscale Model. Simul. 2006 861 899

[3] E. J. Candès, D. L. Donoho Philosophical Transactions of the Royal Society of London A 1999 2495 2509

[4] E. J. Candès, D. L. Donoho Comm. Pure Appl. Math. 2004 219 266

[5] F. Colonna, G. Easley, K. Guo, D. Labate Appl. Comput. Harmon. Anal. 2010 232 250

[6] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, G. Teschke Int. J. Wavelets Multiresolut. Inf. Process. 2008 157 181

[7] M. N. Do, M. Vetterli IEEE Trans. Image Process. 2005 2091 2106

[8] D. L. Donoho Annals of Statistics 1999 859 897

[9] G. R. Easley, D. Labate, F. Colonna IEEE Trans. Image Proc. 2009 260 268

[10] G. R. Easley, D. Labate, W. Lim Appl. Comput. Harmon. Anal. 2008 25 46

[11] P. Grohs Appl. Comput. Harmon. Anal. 2012 44 57

[12] P. Grohs. Bandlimited Shearlet Frames with nice Duals. SAM Report 2011-55, ETH Zurich, July 2011.

[13] K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), pp. 189–201.

[14] K. Guo, D. Labate SIAM J. Math. Anal. 2007 298 318

[15] K. Guo, D. Labate J. Fourier Anal. Appl. 2008 327 371

[16] K. Guo, D. Labate SIAM J. Imag. Sci. 2009 959 986

[17] K. Guo, D. Labate Electron. Res. Announc. Math. Sci. 2010 126 138

[18] K. Guo, D. Labate SIAM J Math. Anal. 2012 851 886

[19] K. Guo, D. Labate, W.-Q. Lim Appl. Comput. Harmon. Anal. 2009 24 46

[20] K. Guo, D. Labate, W.-Q Lim, G. Weiss, E. Wilson Electron. Res. Announc. Amer. Math. Soc. 2004 78 87

[21] K. Guo, D. Labate, W-Q. Lim, G. Weiss, E. Wilson. The theory of wavelets with composite dilations. in : Harmonic Analysis and Applications, C. Heil (ed.), Birkhäuser, Boston, MA, 2006.

[22] K. Guo, W-Q. Lim, D. Labate, G. Weiss, E. Wilson Appl. Computat. Harmon. Anal. 2006 231 249

[23] B. Han Appl. Comput. Harmon. Anal. 2010 330 353

[24] B. Han Appl. Comput. Harmon. Anal. 2012 169 196

[25] R. Houska Appl. Comput Harmon. Anal. 2012 28 44

[26] P. Kittipoom, G. Kutyniok, W.-Q Lim. Construction of compactly supported shearlet frames. Constr. Approx., to appear (2012).

[27] G. Kutyniok. Sparsity Equivalence of Anisotropic Decompositions. preprint (2012).

[28] G. Kutyniok, D. Labate Trans. Amer. Math. Soc. 2009 2719 2754

[29] G. Kutyniok, W.-Q. Lim J. Approx. Theory 2011 1564 1589

[30] G. Kutyniok, T. Sauer SIAM J. Math. Anal. 2009 1436 1471

[31] D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets. in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262.

[32] Y. Meyer, R. Coifman. Wavelets, Calderón-Zygmund Operators and Multilinear Operators. Cambridge Univ. Press, Cambridge, 1997.

[33] P. S. Negi, D. Labate IEEE Trans. Image Process. 2012 2944 2954

[34] V.M. Patel, G. Easley, D. M. Healy IEEE Trans. Image Process. 2009 2673 2685

[35] S. Yi, D. Labate, G. R. Easley, H. Krim IEEE Trans. Image Process 2009 929 941

Cité par Sources :