Voir la notice de l'article provenant de la source EDP Sciences
G. Easley 1 ; D. Labate 2 ; P. Negi 2
@article{MMNP_2013_8_1_a3, author = {G. Easley and D. Labate and P. Negi}, title = {3D {Data} {Denoising} {Using} {Combined} {Sparse} {Dictionaries}}, journal = {Mathematical modelling of natural phenomena}, pages = {60--74}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138104}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/} }
TY - JOUR AU - G. Easley AU - D. Labate AU - P. Negi TI - 3D Data Denoising Using Combined Sparse Dictionaries JO - Mathematical modelling of natural phenomena PY - 2013 SP - 60 EP - 74 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/ DO - 10.1051/mmnp/20138104 LA - en ID - MMNP_2013_8_1_a3 ER -
%0 Journal Article %A G. Easley %A D. Labate %A P. Negi %T 3D Data Denoising Using Combined Sparse Dictionaries %J Mathematical modelling of natural phenomena %D 2013 %P 60-74 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/ %R 10.1051/mmnp/20138104 %G en %F MMNP_2013_8_1_a3
G. Easley; D. Labate; P. Negi. 3D Data Denoising Using Combined Sparse Dictionaries. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 60-74. doi : 10.1051/mmnp/20138104. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/
[1] IEEE Trans. Image Process. 2007 2675 2681
, , , ,[2] Multiscale Model. Simul. 2006 861 899
, , ,[3] Philosophical Transactions of the Royal Society of London A 1999 2495 2509
,[4] Comm. Pure Appl. Math. 2004 219 266
,[5] SIAM Rev. 2001 129 159
, ,[6] Comm. Pure Appl. Math. 2004 1413 1457
, ,[7] IEEE Trans. Inf. Theory 1995 613 627
[8] Constr. Approx. 2001 353 382
[9] Annals of Statistics 1999 859 897
[10] Biometrika 1994 425 455
,[11] J. Amer. Statist. Assoc. 1995 1200 1224
,[12] J. Roy. Statist. Soc. B 1995 301 337
, , ,[13] IEEE Trans. Image Proc. 2009 260 268
, ,[14] Appl. Comput. Harmon. Anal. 2008 25 46
, ,[15] M. Elad. Sparse and Redundant Representations : From Theory to Applications in Signal and Image Processing. Springer, New York, NY, 2010.
[16] Inverse Problems 2007 947 968
, ,[17] K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators, in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), 189–201.
[18] SIAM J. Math. Anal.. 2007 298 318
,[19] Electron. Res. Announc. Math. Sci. 2010 126 138
,[20] SIAM J Math. Anal. 2012 851 886
,[21] Math. Model. Nat. Phenom. 2013 3255
,[22] X. Huo. Sparse Image Representation Via Combined Transforms, Ph.D. Thesis, Stanford University, 1999.
[23] G. Kutyniok. Clustered sparsity and separation of cartoon and texture, preprint (2012).
[24] D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets, in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262.
[25] IEEE Trans. Image Process. 2007 918 931
,[26] IEEE Trans. Signal Process. 2002 1450 1456
[27] S. Mallat. A Wavelet Tour of Signal Processing.Third Edition : The Sparse Way, Academic Press, San Diego, CA, 2008.
[28] IEEE Trans. Image Process. 1998 1072 1080
, ,[29] IEEE Trans. Image Process. 2012 944 2954
,[30] V. M. Patel, G. R. Easley, R. Chellappa, Component-based restoration of speckled images, Proceedings 18th IEEE International Conference on Image Processing (ICIP), 2011.
[31] IEEE Trans. Image Process. 2005 1570 1582
, ,[32] Graphic. Models Image Process. 1995 420 431
, ,[33] J. L. Starck, F. Murtagh, J. M. Fadili. Sparse Image and Signal Processing, Cambridge University Press, New York, NY, 2010.
[34] J. Math. Imaging Vis. 2011 121 139
, ,Cité par Sources :