3D Data Denoising Using Combined Sparse Dictionaries
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 60-74.

Voir la notice de l'article provenant de la source EDP Sciences

Directional multiscale representations such as shearlets and curvelets have gained increasing recognition in recent years as superior methods for the sparse representation of data. Thanks to their ability to sparsely encode images and other multidimensional data, transform-domain denoising algorithms based on these representations are among the best performing methods currently available. As already observed in the literature, the performance of many sparsity-based data processing methods can be further improved by using appropriate combinations of dictionaries. In this paper, we consider the problem of 3D data denoising and introduce a denoising algorithm which uses combined sparse dictionaries. Our numerical demonstrations show that the realization of the algorithm which combines 3D shearlets and local Fourier bases provides highly competitive results as compared to other 3D sparsity-based denosing algorithms based on both single and combined dictionaries.
DOI : 10.1051/mmnp/20138104

G. Easley 1 ; D. Labate 2 ; P. Negi 2

1 System Planning Corporation, Arlington, VA 22201, USA
2 Department of Mathematics, University of Houston, Houston, Texas 77204, USA
@article{MMNP_2013_8_1_a3,
     author = {G. Easley and D. Labate and P. Negi},
     title = {3D {Data} {Denoising} {Using} {Combined} {Sparse} {Dictionaries}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {60--74},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/}
}
TY  - JOUR
AU  - G. Easley
AU  - D. Labate
AU  - P. Negi
TI  - 3D Data Denoising Using Combined Sparse Dictionaries
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 60
EP  - 74
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/
DO  - 10.1051/mmnp/20138104
LA  - en
ID  - MMNP_2013_8_1_a3
ER  - 
%0 Journal Article
%A G. Easley
%A D. Labate
%A P. Negi
%T 3D Data Denoising Using Combined Sparse Dictionaries
%J Mathematical modelling of natural phenomena
%D 2013
%P 60-74
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/
%R 10.1051/mmnp/20138104
%G en
%F MMNP_2013_8_1_a3
G. Easley; D. Labate; P. Negi. 3D Data Denoising Using Combined Sparse Dictionaries. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 60-74. doi : 10.1051/mmnp/20138104. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138104/

[1] J. Bobin, J.-L. Starck, M.J. Fadili, Y. Moudden, D.L. Donoho IEEE Trans. Image Process. 2007 2675 2681

[2] E. J. Candès, L. Demanet, D. Donoho, L. Ying Multiscale Model. Simul. 2006 861 899

[3] E. J. Candès, D. L. Donoho Philosophical Transactions of the Royal Society of London A 1999 2495 2509

[4] E. J. Candès, D. L. Donoho Comm. Pure Appl. Math. 2004 219 266

[5] S. S. Chen, D. L. Donoho, M. A. Saunders SIAM Rev. 2001 129 159

[6] I. Daubechies, M. Defrise, C. De Mol Comm. Pure Appl. Math. 2004 1413 1457

[7] D. L. Donoho IEEE Trans. Inf. Theory 1995 613 627

[8] D. L. Donoho Constr. Approx. 2001 353 382

[9] D. L. Donoho Annals of Statistics 1999 859 897

[10] D. L. Donoho, I. M. Johnstone Biometrika 1994 425 455

[11] D. L. Donoho, I. M. Johnstone J. Amer. Statist. Assoc. 1995 1200 1224

[12] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard J. Roy. Statist. Soc. B 1995 301 337

[13] G. R. Easley, D. Labate, F. Colonna IEEE Trans. Image Proc. 2009 260 268

[14] G. R. Easley, D. Labate, W. Lim Appl. Comput. Harmon. Anal. 2008 25 46

[15] M. Elad. Sparse and Redundant Representations : From Theory to Applications in Signal and Image Processing. Springer, New York, NY, 2010.

[16] M. Elad, P. Milanfar, R. Rubinstein Inverse Problems 2007 947 968

[17] K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators, in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), 189–201.

[18] K. Guo, D. Labate SIAM J. Math. Anal.. 2007 298 318

[19] K. Guo, D. Labate Electron. Res. Announc. Math. Sci. 2010 126 138

[20] K. Guo, D. Labate SIAM J Math. Anal. 2012 851 886

[21] K. Guo, D. Labate Math. Model. Nat. Phenom. 2013 3255

[22] X. Huo. Sparse Image Representation Via Combined Transforms, Ph.D. Thesis, Stanford University, 1999.

[23] G. Kutyniok. Clustered sparsity and separation of cartoon and texture, preprint (2012).

[24] D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets, in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262.

[25] Y. Lu, M. N. Do IEEE Trans. Image Process. 2007 918 931

[26] F. Malgouyres IEEE Trans. Signal Process. 2002 1450 1456

[27] S. Mallat. A Wavelet Tour of Signal Processing.Third Edition : The Sparse Way, Academic Press, San Diego, CA, 2008.

[28] F. G. Meyer, A. Z. Averbuch, R. Coifman IEEE Trans. Image Process. 1998 1072 1080

[29] P. S. Negi, D. Labate IEEE Trans. Image Process. 2012 944 2954

[30] V. M. Patel, G. R. Easley, R. Chellappa, Component-based restoration of speckled images, Proceedings 18th IEEE International Conference on Image Processing (ICIP), 2011.

[31] J. L. Starck, M. Elad, D.L. Donoho IEEE Trans. Image Process. 2005 1570 1582

[32] J. L. Starck, F. Murtagh, A. Bijaoui Graphic. Models Image Process. 1995 420 431

[33] J. L. Starck, F. Murtagh, J. M. Fadili. Sparse Image and Signal Processing, Cambridge University Press, New York, NY, 2010.

[34] A. Woiselle, J. L. Starck, J. M. Fadili J. Math. Imaging Vis. 2011 121 139

Cité par Sources :