Properties of Discrete Framelet Transforms
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 18-47.

Voir la notice de l'article provenant de la source EDP Sciences

As one of the major directions in applied and computational harmonic analysis, the classical theory of wavelets and framelets has been extensively investigated in the function setting, in particular, in the function space L2(ℝd). A discrete wavelet transform is often regarded as a byproduct in wavelet analysis by decomposing and reconstructing functions in L2(ℝd) via nested subspaces of L2(ℝd) in a multiresolution analysis. However, since the input/output data and all filters in a discrete wavelet transform are of discrete nature, to understand better the performance of wavelets and framelets in applications, it is more natural and fundamental to directly study a discrete framelet/wavelet transform and its key properties. The main topic of this paper is to study various properties of a discrete framelet transform purely in the discrete/digital setting without involving the function space L2(ℝd). We shall develop a comprehensive theory of discrete framelets and wavelets using an algorithmic approach by directly studying a discrete framelet transform. The connections between our algorithmic approach and the classical theory of wavelets and framelets in the function setting will be addressed. Using tensor product of univariate complex-valued tight framelets, we shall also present an example of directional tight framelets in this paper.
DOI : 10.1051/mmnp/20138102

Bin Han 1

1 Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, Alberta T6G 2G1, Canada
@article{MMNP_2013_8_1_a1,
     author = {Bin Han},
     title = {Properties of {Discrete} {Framelet} {Transforms}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {18--47},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138102/}
}
TY  - JOUR
AU  - Bin Han
TI  - Properties of Discrete Framelet Transforms
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 18
EP  - 47
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138102/
DO  - 10.1051/mmnp/20138102
LA  - en
ID  - MMNP_2013_8_1_a1
ER  - 
%0 Journal Article
%A Bin Han
%T Properties of Discrete Framelet Transforms
%J Mathematical modelling of natural phenomena
%D 2013
%P 18-47
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138102/
%R 10.1051/mmnp/20138102
%G en
%F MMNP_2013_8_1_a1
Bin Han. Properties of Discrete Framelet Transforms. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 18-47. doi : 10.1051/mmnp/20138102. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138102/

[1] E. J. Candès, D. L. Donoho Comm. Pure Appl. Math. 2004 219 266

[2] C. K. Chui. An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992.

[3] C. K. Chui, W. He Appl. Comput. Harmon. Anal. 2000 293 319

[4] C. K. Chui, W. He, J. Stöckler Appl. Comput. Harmon. Anal. 2002 224 262

[5] A. Cohen, I. Daubechies Duke Math. J. 1992 313 335

[6] A. Cohen, I. Daubechies, J.-C. Feauveau Comm. Pure Appl. Math. 1992 485 560

[7] I. Daubechies Comm. Pure Appl. Math. 1988 909 996

[8] I. Daubechies. Ten lectures on wavelets. SIAM, CBMS Series, 1992.

[9] I. Daubechies, B. Han Constr. Approx. 2004 325 352

[10] I. Daubechies, B. Han, A. Ron, Z. Shen Appl. Comput. Harmon. Anal. 2003 1 46

[11] M. Ehler J. Fourier Anal. Appl. 2007 511 532

[12] M. Ehler, B. Han Appl. Computat. Harmon. Anal. 2008 407 414

[13] K. Guo, D. Labate SIAM J. Math. Anal. 2007 298 318

[14] K. Guo, D. Labate, W.-Q Lim, G. Weiss, E. Wilson Appl. Comput. Harmon. Anal. 2006 202 236

[15] B. Han Appl. Comput. Harmon. Anal. 1997 380 413

[16] B. Han J. Approx. Theory. 2001 18 53

[17] B. Han Linear Algebra and its Applications. 2002 207 225

[18] B. Han SIAM J. Matrix Anal. Appl. 2003 693 714

[19] B. Han J. Approx. Theory. 2003 44 88

[20] B. Han J. Comput. Appl. Math. 2003 43 67

[21] B. Han. Classification and construction of bivariate subdivision schemes, Proceedings on Curves and Surfaces Fitting : Saint-Malo 2002, A. Cohen, J.-L. Merrien, and L. L. Schumaker eds., (2003), 187–197.

[22] B. Han Appl. Comput. Harmon. Anal.. 2004 277 292

[23] B. Han J. Fourier Anal. Appl. 2009 684 705

[24] B. Han Appl. Comput. Harmon. Anal. 2009 14 42

[25] B. Han Math. Comp. 2010 917 951

[26] B. Han Adv. Comput. Math. 2010 209 237

[27] B. Han Appl. Comput. Harmon. Anal. 2010 330 353

[28] B. Han Appl. Comput. Harmon. Anal. 2012 169 196

[29] B. Han, Q. Mo SIAM J. Matrix Anal. Appl. 2004 97 124

[30] B. Han, Q. Mo Appl. Comput. Harmon. Anal. 2005 67 93

[31] B. Han, Z. Shen Constr. Approx. 2009 369 406

[32] B. Han, X. S. Zhuang Acta Appl. Math. 2009 143 171

[33] R. Q. Jia Math. Comp. 1998 647 665

[34] M. J. Lai, J. Stöckler Appl. Comput. Harmon. Anal. 2006 324 348

[35] S. Mallat. A wavelet tour of signal processing. Third edition. Elsevier/Academic Press, Amsterdam, 2009.

[36] Y. Meyer. Wavelets and operators. Cambridge University Press, Cambridge, 1992.

[37] A. Ron, Z. Shen J. Funct. Anal. 1997 408 447

[38] I. W. Selesnick, R. G. Baraniuk, N. G. Kingsbury IEEE Signal Proc. Magazine 2005 123 151

[39] G. Strang, T. Nguyen. Wavelets and filter banks. Wellesley College, 2nd edition, 1996.

[40] M. Vetterli, J. Kovacĕvić. Wavelets and subband coding. Prentice Hall Signal Processing Series, 1995.

Cité par Sources :