Conserved Vectors for a Model of Nonlinear Atmospheric Flows Around The Rotating Spherical Surface
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source EDP Sciences

We derive the conserved vectors for the nonlinear two-dimensional Euler equations describing nonviscous incompressible fluid flows on a three-dimensional rotating spherical surface superimposed by a particular stationary latitude dependent flow. Under the assumption of no friction and a distribution of temperature dependent only upon latitude, the equations in question can be used to model zonal west-to-east flows in the upper atmosphere between the Ferrel and Polar cells. As a particualr example, the conserved densities are analyzed by visualizing the exact invariant solutions associated with the given model for the particular form of finite disturbances for which the invariant solutions are also exact solutions of Navier-Stokes equations.
DOI : 10.1051/mmnp/20138101

A.M. Araslanov 1 ; L.R. Galiakberova 1 ; N.H. Ibragimov 1 ; R. N. Ibragimov 2

1 Laboratory “Group analysis of mathematical models in natural and engineering sciences” Ufa State Aviation Technical University 12, K. Marx, Str., 450000 Ufa, Russia
2 Department of Mathematics University of Texas at Brownsville Brownsville, TX 78520, USA
@article{MMNP_2013_8_1_a0,
     author = {A.M. Araslanov and L.R. Galiakberova and N.H. Ibragimov and R. N. Ibragimov},
     title = {Conserved {Vectors} for a {Model} of {Nonlinear} {Atmospheric} {Flows} {Around} {The} {Rotating} {Spherical} {Surface}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138101/}
}
TY  - JOUR
AU  - A.M. Araslanov
AU  - L.R. Galiakberova
AU  - N.H. Ibragimov
AU  - R. N. Ibragimov
TI  - Conserved Vectors for a Model of Nonlinear Atmospheric Flows Around The Rotating Spherical Surface
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 1
EP  - 17
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138101/
DO  - 10.1051/mmnp/20138101
LA  - en
ID  - MMNP_2013_8_1_a0
ER  - 
%0 Journal Article
%A A.M. Araslanov
%A L.R. Galiakberova
%A N.H. Ibragimov
%A R. N. Ibragimov
%T Conserved Vectors for a Model of Nonlinear Atmospheric Flows Around The Rotating Spherical Surface
%J Mathematical modelling of natural phenomena
%D 2013
%P 1-17
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138101/
%R 10.1051/mmnp/20138101
%G en
%F MMNP_2013_8_1_a0
A.M. Araslanov; L.R. Galiakberova; N.H. Ibragimov; R. N. Ibragimov. Conserved Vectors for a Model of Nonlinear Atmospheric Flows Around The Rotating Spherical Surface. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 1-17. doi : 10.1051/mmnp/20138101. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138101/

[1] R.F. Anderson, S. Ali, L.L. Brandtmiller, S.H.H. Nielsen, M.Q. Fleisher Science. 2006 1443 1448

[2] G.K. Bachelor. An Introduction to Fluid Dynamics. Cambridge University Press, (1967) Cambridge.

[3] S. Balasuriya J. Math.Anal. Appl. 1997 128 150

[4] O.M. Belotserkovskii, I.V. Mingalev, O.V. Mingalev Cosmic Research 2009 466 479

[5] G. Ben-Yu Math. Comput. 1995 1067 1079

[6] E.N. Blinova C.R. (Doklady) Acad. Sci USSR 1943 257 260

[7] E.N. Blinova Dokl. Acad. Nauk USSR 1956 975 977

[8] C. Cenedese, P.F. Linden J. Fluid Mech. 1999 199 223

[9] A. Furnier, H. Bunger, R. Hollerbach, I. Vilotte Geophys. J. Int. 2004 682 700

[10] H. Golovkin Proc. Steklov Inst. Math. 1966 33 53

[11] E. Herrmann Bull. Amer. Math. Soc. 285 296

[12] P.A. Hsieh Ground Water. 2011 319 323

[13] R.N. Ibragimov Phys. Fluids. 2011 123102

[14] R.N. Ibragimov, M. Dameron Physica Scripta. 2011 015402

[15] N.H. Ibragimov, R.N. Ibragimov Phys. Letters A. 2011 3858

[16] N.H. Ibragimov, R.N. Ibragimov. Applications of Lie Group Analysis in Geophysical Fluid Dynamics. (2011) Series on Complexity, Nonlinearity and Chaos, Vol 2, World Scientific Publishers, ISBN : 978-981-4340-46-5.

[17] N.H. Ibragimov, R.N. Ibragimov. Conservation laws and invariant solutions for a model of nonlinear atmospheric zonal flows in a thin rotatimng spherical shell. (2012) Archives of ALGA, vol. 9, pp.27-38.

[18] R.N. Ibragimov, D.E. Pelinovsky Phys. Fluids. 2010 126602

[19] R.N. Ibragimov Springer. Mathematical Physics, Analysis and Geometry 2010 331 355

[20] R.N. Ibragimov, D.E. Pelinovsky J. Math. Fluid. Mech. 2009 60 90

[21] R.N. Ibragimov Physica Scripta. 2000 391 395

[22] N.H. Ibragimov Journal of Mathematical Analysis and Applications 2007 311 328

[23] D. Iftimie, G. Raugel J. Diff. Eqs. 2001 281 331

[24] H. Lamb. Hydrodynamics. Cambridge University Press, 5th edition (1924) .

[25] J.L. Lions, R. Teman, S. Wang Nonlinearity. 1992 1007 1053

[26] J.L. Lions, R. Teman, S. Wang Nonlinearity 1992 237 288

[27] E. Noether. Invariante Variationsprobleme. Konigliche Gessellschaft der Wissenschaften, Gottingen Math. Phys. K1., (1918) English transl. : Transport Theory and Statistical Physics 1(3) (1971) 186-207.

[28] D.T. Shindell, G.A. Schmidt Res. Lett. 2004 L18209

[29] J. Shen. On pressure stabilization method and projection method for unsteady Navier-Stokes equations, in : Advances in Computer Methods for Partial Differential Equations, (1992) 658-662, IMACS, New Brunswick, NJ.

[30] C.P. Summerhayes, S.A. Thorpe. Oceanography, An Illustrative Guide. (1996) New York : John Willey Sons.

[31] P.N. Swarztrauber Mon. Wea. Rev. 2004 3010 3018

[32] P.N. Swarztrauber SIAM J. Numer. Anal. 1981 181 210

[33] R. Temam, M. Ziane Contemp. Math. 1997 281 314

[34] J.R. Toggweiler, J.L. Russel Nature. 2008 286 288

[35] W. Weijer, F. Vivier, S.T. Gille, H. Dijkstra J. Phys. Oceanogr. 2007 2869 2881

[36] D. Williamson J. Comput. Physics. 1992 211 224

Cité par Sources :