Membrane associated complexes : new approach to calcium dynamics modelling
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 167-186.

Voir la notice de l'article provenant de la source EDP Sciences

Mitochondria are one of the most important organelles determining Ca2+ regulatory pathway in the cell. Recent experiments suggested the existence of cytosolic microdomains with locally elevated calcium concentration (CMDs) in the nearest vicinity of the outer mitochondrial membrane (OMM). These intermediate physical connections between endoplasmic reticulum (ER) and mitochodria are called MAM (mitochondria-associated ER membrane) complexes. The aim of this paper is to take into account the direct calcium flow from ER to mitochondria implied by the existence of MAMs and perform detailed numerical analysis of the influence of this flow on the type and shape of calcium oscillations. Depending on the permeability of MAMs interface and ER channels, different patterns of oscillations appear (simple, bursting and chaotic). For some parameters the oscillatory pattern disappear and the system tends to a steady state with extremely high calcium level in mitochondria, which can be interpreted as a crucial point at the beginning of an apoptotic pathway.
DOI : 10.1051/mmnp/20127608

M. Dyzma 1 ; P. Szopa 1, 2 ; B. Kaźmierczak 1

1 Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw
2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
@article{MMNP_2012_7_6_a7,
     author = {M. Dyzma and P. Szopa and B. Ka\'zmierczak},
     title = {Membrane associated complexes : new approach to calcium dynamics modelling},
     journal = {Mathematical modelling of natural phenomena},
     pages = {167--186},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2012},
     doi = {10.1051/mmnp/20127608},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127608/}
}
TY  - JOUR
AU  - M. Dyzma
AU  - P. Szopa
AU  - B. Kaźmierczak
TI  - Membrane associated complexes : new approach to calcium dynamics modelling
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 167
EP  - 186
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127608/
DO  - 10.1051/mmnp/20127608
LA  - en
ID  - MMNP_2012_7_6_a7
ER  - 
%0 Journal Article
%A M. Dyzma
%A P. Szopa
%A B. Kaźmierczak
%T Membrane associated complexes : new approach to calcium dynamics modelling
%J Mathematical modelling of natural phenomena
%D 2012
%P 167-186
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127608/
%R 10.1051/mmnp/20127608
%G en
%F MMNP_2012_7_6_a7
M. Dyzma; P. Szopa; B. Kaźmierczak. Membrane associated complexes : new approach to calcium dynamics modelling. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 167-186. doi : 10.1051/mmnp/20127608. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127608/

[1] D.E. Clapham Cell 2007 1047 1058

[2] A.J. Laude, A.W.M. Simpson FEBS J. 2009 1800 1816

[3] C. Montell Cell 2005 157 163

[4] A.M. Oster, B. Thomas, D. Terman, C.P. Fall J Theor Biol 2011 216 231

[5] G. Hajnóczky, G. Csordás, M. Madesh, P. Pacher J. Physiology 2000 69 81

[6] J.E. Chipuk, L. Bouchier-Hayes, D.R. Green Cell Death Differ. 2006 1396 1400

[7] S.W. Tait, M.J. Parsons, F. Llambi, L. Bouchier-Hayes, S. Connell, C. Munoz-Pinedo, D.R. Green Dev. Cell 2010 802 81

[8] G. Hajnóczky, G. Csordás, S. Das, C. Garcia-Perez, M. Saotome, S.S. Roy, M. Yi Cell Calcium 2006 553 560

[9] J.A.M. Borghans, G. Dupont, A. Goldbeter Biophysical Chemistry 1997 25 41

[10] M. Marhl, T. Haberichter, M. Brumen, R. Heinrich Biosystems 2000 75 86

[11] G. Csordás, P. Várnai, T. Golenár, S. Roy, G. Purkins, T.G. Schneider, T. Balla, G. Hajnóczky Mol Cell 2010 121 132

[12] E.A. Dennis, E.P. Kennedy J Lipid Res 1972 263 267

[13] A.E. Rusinol, Z. Cui, M.H. Chen, J.E. Vance J Biol Chem 1994 27494 27502

[14] C. Giorgi, D. De Stefani, A. Bononi, R. Rizzuto, P. Pinton Int J Biochem Cell Biol 2009 1817 1827

[15] M. Lebiedzinska, G. Szabadkai, A.W.E. Jones, J. Duszynski, M.R. Wieckowski Int J Biochem Cell Biol 2009 1805 1816

[16] M. Giacomello, I. Drago, M. Bortolozzi, M. Scorzeto, A. Gianelle, P. Pizzo, T. Pozzan Mol Cell. 2010 280 290

[17] G. Csordás, C. Renken, P. Várnai, L. Walter, D. Weaver, K.F. Buttle, T. Balla, C.A. Mannella, G. Hajnóczky J Cell Biol 2006 915 921

[18] T. Hayashi, R. Rizzuto, G. Hajnóczky, T.-P. Su Trends Cell Biol 2009 81 88

[19] S. Schuster, M. Marhl, T. Höfer Eur J Biochem 2002 1333 1355

[20] D. Hariprasad, M. McNulty, J. Shi, P. Tian. Three-pool model of calcium signaling. https://digitalarchive.wm.edu/bitstream/handle/10288/1179/Hariprasad%20Daniel%202009.pdf?sequence=1 (2009).

[21] M. Marhl, S. Schuster, M. Brumen Biophysical Chemistry 1998 125 132

[22] H. Coe, M. Michalak. Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys, 28 Spec No Focus (2009) F96–F103.

[23] B. Schwaller. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol, 2(11) a004051.

[24] A.B. Parekh News Physiol Sci 2003 252 256

[25] J. Keener, J. Sneyd. Mathematical Physiology, Springer, New York, 1998.

[26] J. Sneyd, A. Duffy, P.D. Dale SIAM J. Appl. Math. 1998 1178 1192

[27] A. Skupin, M. Falcke Chaos 2009 037111

[28] B.W. Hoogenboom, K. Suda, A. Engel, D. Fotiadis J Mol Biol. 2007 246 255

[29] V. Shoshan-Barmatz, V. De Pinto, M. Zweckstetter, Z. Raviv, N. Keinan, N. Arbel Mol Aspects Med. 2010 227 285

[30] G. Dupont, L. Combettes Chaos 2009 037112

[31] J. Wagner, J. Keizer Biophys J. 1994 447 456

[32] A.P. Dawson, G.T. Rich, J.W. Loomis-Husselbee Biochem J. 1995 371 374

[33] M. Hoth, C.M. Fanger, R.S. Lewis J Cell Biol. 1997 633 648

[34] Y.-X. Li, J. Keizer, S.S. Stojilkovic, J. Rinzel Am J Physiol Cell Physiol 1995 C1079 C1092

[35] J. Sneyd, K. Tsaneva-Atanasova, D. I. Yule, J. L. Thompson, T. J. Shuttleworth Proc Natl Acad Sci USA 2004 1392 1396

[36] D.F. Babcock, B. Hille Curr. Opin. Neurobiol. 1998 398 404

[37] M. Falcke Advances in Physics 2004 255 440

[38] A. Rasola, P. Bernardi Apoptosis 2007 815 833

[39] D.F. Babcock, J. Herrington, P.C. Goodwin, Y.B. Park, B. Hille J. Cell Biol 1997 833 844

[40] S. Hehl, A. Golard, B. Hille Cell Calcium 1996 515 524

[41] N. Svichar, V. Shishkin, P. Kostyuk Neuroreport 1999 1257 1261

[42] V.V. Chepyzhov, M.I. Vishik. Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence RI, 2002.

[43] W. Govaerts, Yu.A. Kuznetsov, http://www.matcont.ugent.be.

[44] S.K. Joseph, G. Hajnóczky Apoptosis 2007 951 968

[45] S.S. Roy, G. Hajnóczky Methods 2008 213 223

[46] R. Rizzuto, P. Pinton, D. Ferrari, M. Chami, G. Szabadkai, P.J. Magalhães, F. Di Virgilio, T. Pozzan Oncogene 2003 8619 8627

[47] V.N. Govorukhin. http://www.math.rsu.ru/mexmat/kvm/matds/.

[48] R. Hegger, H. Kantz, T. Schreiber. http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html.

[49] H. Kantz, T. Schreiber. Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 2004.

[50] A.B. Özer, E. Akin SAU Fen Bilimleri Enstitusu Dergisi 2005 60 66

[51] B.J. Park, D.G. Lee, J.R. Yu, S.K. Jung, K. Choi, J. Lee, J. Lee, Y.S. Kim, J.I. Lee, J.Y. Kwon, J. Lee, A. Singson, W.K. Song, S.H. Eom, C.S. Park, D.H. Kim, J. Bandyopadhyay, J. Ahnn Mol Biol Cell. 2001 2835 2845

[52] L. Ellgaard, A. Helenius Current Opinion in Cell Biology 2001 431 437

[53] T. Anelli, M. Alessio, A. Mezghrani, T. Simmen, F. Talamo, A. Bachi, R. Sitia The EMBO Journal 2002 835 844

[54] T. Hayashi, T.P. Su Cell 2007 596 610

[55] S.M. Jethmalani, K.J. Henle J Cell Biochem. 1998 30 43

[56] L.A. Mizzen, A.N. Kabiling, W.J. Welch Cell Regul. 1991 165 179

Cité par Sources :