Modeling Biological Rhythms in Cell Populations
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 107-125.

Voir la notice de l'article provenant de la source EDP Sciences

Biological rhythms occur at different levels in the organism. In single cells, the cell division cycle shows rhythmicity in the way its molecular regulators, the cyclin dependant kinases (CDKs), modulate their activity periodically to ensure a healthy progression. In tissues, cell proliferation is driven by the circadian clock, which modulates the progression through the cell cycle along the day. The circadian clock shows endogenous rhythmicity through a robust network of transcription-translation feedback loops that create sustained oscillations. Rhythmicity is preserved in cell populations by the coordination of the clocks among cells, through rhythmic synchronization signals. Here we discuss mechanisms for generating rhythmic activities in cell populations by reviewing some of the mathematical models that deal with them. We discuss the implication of biological rhythms for tissue growth and the possible application to chronomodulated cancer treatments.
DOI : 10.1051/mmnp/20127606

R. El Cheikh 1, 2 ; T. Lepoutre 1, 2 ; S. Bernard 1, 2

1 Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
2 INRIA project-team DRACULA, INRIA-antenne Lyon-La Doua, Batiment CEI-1 66 Boulevard Niels Bohr, 69603 Villeurbanne cedex France
@article{MMNP_2012_7_6_a5,
     author = {R. El Cheikh and T. Lepoutre and S. Bernard},
     title = {Modeling {Biological} {Rhythms} in {Cell} {Populations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2012},
     doi = {10.1051/mmnp/20127606},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127606/}
}
TY  - JOUR
AU  - R. El Cheikh
AU  - T. Lepoutre
AU  - S. Bernard
TI  - Modeling Biological Rhythms in Cell Populations
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 107
EP  - 125
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127606/
DO  - 10.1051/mmnp/20127606
LA  - en
ID  - MMNP_2012_7_6_a5
ER  - 
%0 Journal Article
%A R. El Cheikh
%A T. Lepoutre
%A S. Bernard
%T Modeling Biological Rhythms in Cell Populations
%J Mathematical modelling of natural phenomena
%D 2012
%P 107-125
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127606/
%R 10.1051/mmnp/20127606
%G en
%F MMNP_2012_7_6_a5
R. El Cheikh; T. Lepoutre; S. Bernard. Modeling Biological Rhythms in Cell Populations. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 107-125. doi : 10.1051/mmnp/20127606. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127606/

[1] P. Achermann, H. Kunz J Biol Rhythm 460 468 1999

[2] S. Becker-Weimann, J. Wolf, H. Herzel, A. Kramer Biophys J 3023 3034 2004

[3] F. Bekkal Brikci, J. Clairambault, B. Perthame Math and Comp Modelling 699 713 2008

[4] S. Bernard, H. Herzel Genome Inform Ser. 72 79 2006

[5] S. Bernard, D. Gonze, B. Cǎjavec, H. Herzel, A. Kramer PLoS Comput Biol 72 79 2006

[6] S. Bernard, B. Căjavec Bernard, F. Lévi, H. Herzel LoS Comput Biol 2010

[7] F. Billy, J. Clairambault, O. Fercoq. Optimisation of cancer drug treatments using cell population dynamics. Math Meth and Mod in Biomed, 257–299, 2012.

[8] A. Chauhan, S. Lorenzen, H. Herzel, S. Bernard J Theor Biol 103 12 2011

[9] J. Clairambault, S. Gaubert, T. Lepoutre Math Comput Model 1558 1567 2011

[10] J. Clairambault, S. Gaubert, T. Lepoutre Math Model Nat Phenom 183 209 2009

[11] J. Clairambault, S. Gaubert, B. Perthame C R Math 549 554 2007

[12] J. Clairambault, P. Michel, B. Perthame C R Math 17 22 2006

[13] C. Czeisler, R. Kronauer, J. Allan, J. Duffy, M. Jewett, E. Brown, J. Ronda science 1328 1333 1989

[14] M. Davidich, S. Bornholdt PLoS One 2008

[15] M. Doumic MMNP 121 152 2007

[16] J. E. Ferrell, T. Y.-C. Tsai, Q. Yang Cell 874 85 2011

[17] Pc. Da Fonseca, J. He, Ep. Morris Mol Cell 54 66 2012

[18] D. Forger, M. Jewett, R. Kronauer J Biol Rhythm 533 538 1999

[19] D. Forger, R. Kronauer. Reconciling mathematical models of biological clocks by averaging on approximate manifolds. SIAM J Appl Math., pages 1281–1296, 2002.

[20] D. B. Forger, C. S. Peskin Proc Natl Acad Sci USA 14806 14811 2003

[21] C. Gérard, A. Goldbeter Interface Focus 24 35 2011

[22] S. Gery, Hp Koeffler Cell Cycle 1097 1103 2010

[23] C. Gérard, A. Goldbeter Plos Comp Biol

[24] A. Goldbeter, C. Ge, C. Gérard. Temporal self-organization of the Cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci USA, 1–6, 2009.

[25] D. Gonze Cent Eur J Biol 699 711 2011

[26] B.C. Goodwin. Temporal Organization in Cells. A Dynamic Theory of Cellular Control Processes. New York: Academic Press, 1963.

[27] B.C. Goodwin Advances in Enzyme Regulation 425 438 1965

[28] T. Hunt. The Life Scientific, BBC Radio 4 podcast, 13/12/2011.

[29] J.F.C. Kingman Quart. J. Math. Oxford 283 284 1961

[30] T. Kubo, K. Ozasa, K. Mikami, K. Wakai, Y. Fujino, Y. Watanabe, T. Miki, M. Nakao, K. Hayashi, K. Suzuki Am J Epidemiol 549 555 2006

[31] H. Kunz, P. Achermann J Theor Biol 63 78 2003

[32] J.-C. Leloup, A. Goldbeter Proc Natl Acad Sci USA 7051 7056 2003

[33] T. Lepoutre. Analysis and modelling of growth and motion phenomenon from biology. PHD in applied mathematics. Université Pierre et Marie Curie Paris (France), 2007–2009.

[34] F. Lévi The Lancet Oncology 307 315 2001

[35] F. Lévi J of Pharmacy and Pharmacol 891 898 1999

[36] E.S. Maywood, A.B. Reddy, G.K.Y. Wong, J.S. O’Neill, J.A. O’Brien, D.G. Mcmahon, A.J. Harmar, H. Okamura, M.H. Hastings Curr Biol 599 605 2006

[37] M.C. Mackey Blood 941 56 1978

[38] H. Mirsky, A. Liu, D. Welsh, S. Kay, F. Doyle Proc Natl Acad Sci USA 11107 11112 2009

[39] B. Novak, Z. Pataki, A. Ciliberto, J.J. Tyson Mathematical model of the cell division cycle of fission yeast Chaos 277 286 2001

[40] B. Novak, J.J. Tyson J Theor Biol 563 579 2004

[41] B.F. Pando, A. Van Oudenaarden Curr Opin Genet Dev 1 6 2010

[42] B. Perthame. Transport equations in biology. Birkhauser, 2007.

[43] J. R. Pomerening, E. D. Sontag, J. E. Ferrell Nat Cell Biol 346 51 2003

[44] K. Rompala, R. Rand, H. Howland Commun Nonlinear Sci 794 803 2007

[45] P. Ruoff, C.M. M Vindjevik, L. Rensing J. Theor. Biol. 29 42 2001

[46] S. Sahar, P. Sassone-Corsi. Circadian rhythms and memory formation: regulation by chromatin remodeling. Front Mol Neurosci, 5–37, 2006. Published online 2012 March 26. doi: 10.3389/fnmol.2012.00037.

[47] M. Swat, A. Kel, H. Herzel Bioinformatics 1506 1511 2004

[48] J.J. Tyson, B. Novak. Temporal organization of the cell cycle. Curr Biol 18, R759-R768, 2008.

[49] J.J. Tyson, K.C. Chen, B. Novak Curr Op in Cell Biol 221 231 2003

[50] B. Van Der Pol, J. Van Der Mark Nature 363 364 1927

[51] A.B. Webb, N. Angelo, J.E. Huettner, E.D. Herzog Proc Natl Acad Sci USA 16493 16498 2009

[52] D. Welsh, J. Takahashi, S. Kay Ann Rev Physiol 551 577 2010

[53] P.O. Westermark, D.K. Welsh, H. Okamura, H. Herzel PLoS Comput Biol 2009

[54] R. Wever Biol Cybern 139 154 1962

[55] R. Wever Biol Cybern 213 231 1963

[56] S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, H Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus Science 1408 1412 2003

[57] E. E. Zhang, S. A. Kay Nat Rev Mol Cell Biol 764 776 2010

Cité par Sources :