An Analysis of Overall Network Architecture Reveals an Infinite-period Bifurcation Underlying Oscillation Arrest in the Segmentation Clock
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 95-106.

Voir la notice de l'article provenant de la source EDP Sciences

Unveiling the mechanisms through which the somitogenesis regulatory network exerts spatiotemporal control of the somitic patterning has required a combination of experimental and mathematical modeling strategies. Significant progress has been made for the zebrafish clockwork. However, due to its complexity, the clockwork of the amniote segmentation regulatory network has not been fully elucidated. Here, we address the question of how oscillations are arrested in the amniote segmentation clock. We do this by constructing a minimal model of the regulatory network, which privileges architectural information over molecular details. With a suitable choice of parameters, our model is able to reproduce the oscillatory behavior of the Wnt, Notch and FGF signaling pathways in presomitic mesoderm (PSM) cells. By introducing positional information via a single Wnt3a gradient, we show that oscillations are arrested following an infinite-period bifurcation. Notably: the oscillations increase their amplitude as cells approach the anterior PSM and remain in an upregulated state when arrested; the transition from the oscillatory regime to the upregulated state exhibits hysteresis; and opposing Fgf8 and RA gradients along the PSM naturally arise in our simulations. We hypothesize that the interaction between a limit cycle (originated by the Notch delayed-negative feedback loop) and a bistable switch (originated by the Wnt-Notch positive cross-regulation) is responsible for the observed segmentation patterning. Our results agree with previously unexplained experimental observations and suggest a simple plausible mechanism for spatiotemporal control of somitogenesis in amniotes.
DOI : 10.1051/mmnp/20127605

E. Zavala 1 ; M. Santillán 2, 3

1 Centro de Investigación y de Estudios Avanzados del IPN, Depto. de Biomedicina Molecular. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360 México DF, México
2 Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey. Vía del Conocimiento 201, Parque PIIT, CP 66600 Apodaca NL, México
3 Centre for Applied Mathematics in Bioscience and Medicine. 3655 Promenade Sir William Osler McIntyre Medical Building, Room 1123A, Montreal, QC H3G 1Y6, Canada
@article{MMNP_2012_7_6_a4,
     author = {E. Zavala and M. Santill\'an},
     title = {An {Analysis} of {Overall} {Network} {Architecture} {Reveals} an {Infinite-period} {Bifurcation} {Underlying} {Oscillation} {Arrest} in the {Segmentation} {Clock}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2012},
     doi = {10.1051/mmnp/20127605},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127605/}
}
TY  - JOUR
AU  - E. Zavala
AU  - M. Santillán
TI  - An Analysis of Overall Network Architecture Reveals an Infinite-period Bifurcation Underlying Oscillation Arrest in the Segmentation Clock
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 95
EP  - 106
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127605/
DO  - 10.1051/mmnp/20127605
LA  - en
ID  - MMNP_2012_7_6_a4
ER  - 
%0 Journal Article
%A E. Zavala
%A M. Santillán
%T An Analysis of Overall Network Architecture Reveals an Infinite-period Bifurcation Underlying Oscillation Arrest in the Segmentation Clock
%J Mathematical modelling of natural phenomena
%D 2012
%P 95-106
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127605/
%R 10.1051/mmnp/20127605
%G en
%F MMNP_2012_7_6_a4
E. Zavala; M. Santillán. An Analysis of Overall Network Architecture Reveals an Infinite-period Bifurcation Underlying Oscillation Arrest in the Segmentation Clock. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 95-106. doi : 10.1051/mmnp/20127605. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127605/

[1] A. Aulehla, O. Pourquié Cold Spring Harb. Perspect. Biol. 2010 a000869

[2] A. Aulehla, C. Wehrle, B. Brand-Saberi, R. Kemler, A. Gossler, B. Kanzler, B. G. Herrman Dev. Cell. 2003 395 406

[3] A. Aulehla, W. Wiegrabe, V. Baubet, M. B. Wahl, X. Deng, M. Taketo, M. Lewandoski, O. Pourquié Nat. Cell. Biol. 2008 186 193

[4] M. Campanelli, T. Gedeon PLoS Comp. Biol. 2010 e1000728

[5] M. Campanelli. Multicellular mathematical models of somitogenesis. PhD thesis Montana State University (2009), ISBN 9781109317299.

[6] B. Christ, C. P. Ordahl Anat. Embryol. 1995 381 396

[7] O. Cinquin Mech. Dev. 2007 501 517

[8] J. Cooke, E. C. Zeeman J. Theor. Biol. 1976 455 476

[9] M. L. Dequéant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, O. Pourquié Science 2006 1595 1598

[10] M. L. Dequéant, O. Pourquié Nat. Rev. Gen. 2008 370 382

[11] R. Diez Del Corral, I. Olivera-Martínez, A. Goriely, E. Gale, M. Maden, K. Storey Neuron 2003 65 79

[12] J. Dubrulle, O. Pourquié Dev. 2004 5783 5793

[13] J. Dubrulle, O. Pourquié Nature 2004 419 422

[14] B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. 1st Ed. Society for Industrial Mathematics. Philadelphia (2002).

[15] S. Gibb, M. Maroto, J. K. Dale Trends Cell Biol. 2010 593 600

[16] S. Gibb, A. Zagorska, K. Melton, G. Tenin, I. Vacca, P. Trainor, M. Maroto, J. K. Dale Dev. Biol. 2009 21 31

[17] F. Giudicelli, E. M. Özbudak, G. J. Wright, J. Lewis PLoS Biol. 2007 1309 1323

[18] A. Goldbeter, D. Gonze, O. Pourquié Dev. Dyn. 2007 1495 1508

[19] A. Goldbeter, O. Pourquié J. Theor. Biol. 2008 574 585

[20] C. Gomez, E. M. Özbudak, J. Wunderlich, D. Baumann, J. Lewis, O. Pourquié Nat. Lett. 2008 335 339

[21] A. Ishikawa, S. Kitajima, Y. Takahashi, H. Kokub, J. Kanno, T. Inoue, Y. Saga Mech. Dev. 2004 1443 1453

[22] P. B. Jensen, L. Pedersen, S. Krishna, M. H. Jensen Biophys. J. 2010 943 950

[23] J. Lewis Curr. Biol. 2003 1398 1408

[24] I. Palmeirim, D. Henrique, D. Ish-Horowicz, O. Pourquié Cell 1997 639 648

[25] P. C. G. Rida, N. Le Minh, Y. J. Jiang Dev. Biol. 2004 2 22

[26] J. G. Rodríguez-González, M. Santillán, A. C. Fowler, M. C. Mackey J. Theor. Biol. 2007 37 47

[27] Y. Saga, H. Takeda Nat. Rev. Gen. 2001 835 845

[28] M. Santillán, M. C. Mackey PLoS ONE 2008 e1561

[29] M. B. Wahl, C. Deng, M. Lewandoski, O. Pourquié Dev. 2007 4033 4041

[30] Y. Yasuhiko, S. Haraguchi, S. Kitajima, Y. Takahashi, J. Kanno, Y. Saga Proc. Natl. Acad. Sci. USA 2006 3651 6

Cité par Sources :