Precise Self-tuning of Spiking Patterns in Coupled Neuronal Oscillators
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 67-94.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we discuss and analyze spiking patterns in a generic mathematical model of two coupled non-identical nonlinear oscillators supplied with a spike-timing dependent plasticity (STDP) mechanism. Spiking patterns in the system are shown to converge to a phase-locked state in a broad range of parameters. Precision of the phase locking, i.e. the amplitude of relative phase deviations from a given reference, depends on the natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanisms. The deviations, however, can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. The scheme applies to systems in which individual oscillators operate in the oscillatory mode. If the dynamics of oscillators becomes bistable then relative phase may fail to converge to a given value giving rise to the emergence of complex spiking sequences.
DOI : 10.1051/mmnp/20127604

I.Y. Tyukin 1, 2 ; V.B. Kazantsev 3, 4

1 Department of Mathematics, University of Leicester, University Road, LE1 7RH, UK
2 Department of Automation and Control Processes, Saint-Petersburg State Electrotechnical University Prof. Popova str. 5, 197376, Russia
3 Department of Nonlinear Dynamics, Institute of Applied Physics of RAS Nizhny Novgorod, Russia
4 Department of Neurodynamics and Neurobiology, University of Nizhny Novgorod Nizhny Novgorod, Russia
@article{MMNP_2012_7_6_a3,
     author = {I.Y. Tyukin and V.B. Kazantsev},
     title = {Precise {Self-tuning} of {Spiking} {Patterns} in {Coupled} {Neuronal} {Oscillators}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {67--94},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2012},
     doi = {10.1051/mmnp/20127604},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127604/}
}
TY  - JOUR
AU  - I.Y. Tyukin
AU  - V.B. Kazantsev
TI  - Precise Self-tuning of Spiking Patterns in Coupled Neuronal Oscillators
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 67
EP  - 94
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127604/
DO  - 10.1051/mmnp/20127604
LA  - en
ID  - MMNP_2012_7_6_a3
ER  - 
%0 Journal Article
%A I.Y. Tyukin
%A V.B. Kazantsev
%T Precise Self-tuning of Spiking Patterns in Coupled Neuronal Oscillators
%J Mathematical modelling of natural phenomena
%D 2012
%P 67-94
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127604/
%R 10.1051/mmnp/20127604
%G en
%F MMNP_2012_7_6_a3
I.Y. Tyukin; V.B. Kazantsev. Precise Self-tuning of Spiking Patterns in Coupled Neuronal Oscillators. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 67-94. doi : 10.1051/mmnp/20127604. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127604/

[1] W.C. Abraham Nature Reviews Neuroscience 2008 387 399

[2] T. Bem, J. Rinzel Journal of Neurophysiology 2004 693 703

[3] M.A. Diana, P. Bregestovski Cell Calcium 2005 497 505

[4] A. Dityatev, D.A. Rusakov Current Opinion in Neurbiology 2011 353 359

[5] W. Gerstner, R. Kempter, J.L. Van Hemmen, H. Wagner Nature 1996 76 78

[6] J. Guckenheimer, P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, 1986.

[7] S.Yu. Gordleeva, S.V. Stasenko, A.V. Semyanov, A.E. Dityatev, V.B. Kazantsev Frontiers of Computational Neuroscience 2012

[8] F.C. Hoppensteadt, E.M. Izhikevich. Weakly connected neural networks. Springer-Verlag, 1997.

[9] Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D. Ferster, R. Yuste Science 2004 559 564

[10] E.M. Izhikevich Neural Computation 2006 245 282

[11] E.M. Izhikevich. Dynamical systems in neuroscience. The geometry of excitability and bursting. MIT Press, 2007.

[12] E.M. Izhikevich Cerebral Cortex 2007 2443 2452

[13] C. Kayser, M.A. Montemurro, N.K. Logothetis, S. Panzeri Neuron 2009 597 608

[14] V. Kazantsev, I. Tyukin PLOS ONE 2012 e30411

[15] V. Kazantsev, S.Yu. Gordleeva, S.V. Stasenko, A.E. Dityatev PLOS ONE 2012 e41646

[16] V.B. Kazantsev, V.I. Nekorkin, S. Binczak, S. Jacquir, J.M. Bilbault Chaos 2005 023103

[17] H.J. Koester, B. Sakmann Proc Natl Acad Sci USA 1998 9596 9601

[18] F. Lanore, N. Rebola, M. Carta The Journal of Neuroscience 2009 8299 8301

[19] T. Ohno-Shosakua, Y. Hashimotodania, T. Maejima, M. Kano Cell Calcium 2005 369 374

[20] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: a unified concept in nonlinear sciences. Cambridge University Press, 2001.

[21] J.D. Rolston, S.M. Wagenaar Neuroscience 2007 294 303

[22] P.F. Rowat, A.I. Selverston Journal of Neurophysiology 1993 1030 1053

[23] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua. Methods of qualitative theory in nonlinear dynamics. World Scientific, 2001.

[24] P.J. Sjostrom, E.A. Rancz, A. Roth, M. Hausser Physiological Reviews 2008 769 840

[25] S. Song, K.D. Miller, L.F. Abbott Nature Neuroscience 2000 919 926

[26] I. Tyukin. Adaptation in dynamical systems. Cambridge University Press, 2011.

[27] I. Tyukin, E. Steur, H. Neijmeijer, C. Van Leeuwen SIAM Journal on Control and Optimization 2008 849 882

[28] A. Whitehead, M.I. Rabinovich, R. Huerta, V.P. Zhigulin, H.D.I. Abarbanel Biological Cybernetics 2003 229 235

Cité par Sources :