Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_6_a1, author = {P.S. Mandal and M. Banerjee}, title = {Multiplicative-noise {Can} {Suppress} {Chaotic} {Oscillation} in {Lotka-Volterra} {Type} {Competitive} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {23--46}, publisher = {mathdoc}, volume = {7}, number = {6}, year = {2012}, doi = {10.1051/mmnp/20127602}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127602/} }
TY - JOUR AU - P.S. Mandal AU - M. Banerjee TI - Multiplicative-noise Can Suppress Chaotic Oscillation in Lotka-Volterra Type Competitive Model JO - Mathematical modelling of natural phenomena PY - 2012 SP - 23 EP - 46 VL - 7 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127602/ DO - 10.1051/mmnp/20127602 LA - en ID - MMNP_2012_7_6_a1 ER -
%0 Journal Article %A P.S. Mandal %A M. Banerjee %T Multiplicative-noise Can Suppress Chaotic Oscillation in Lotka-Volterra Type Competitive Model %J Mathematical modelling of natural phenomena %D 2012 %P 23-46 %V 7 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127602/ %R 10.1051/mmnp/20127602 %G en %F MMNP_2012_7_6_a1
P.S. Mandal; M. Banerjee. Multiplicative-noise Can Suppress Chaotic Oscillation in Lotka-Volterra Type Competitive Model. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 6, pp. 23-46. doi : 10.1051/mmnp/20127602. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127602/
[1] Math. Bios. Eng. 2004 185 211
, ,[2] R.M. May. Stability and complexity in Model Ecosystems. Princeton University Press, Princeton, NJ, USA, 1973.
[3] J.D. Murray, Mathematical Biology, Berlin, Springer-Verlag, 1989.
[4] E. Renshaw. Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge, 1993.
[5] P. Turchin. Complex Population Dynamics: A theoretical/empirical synthesis. Princeton, NJ: Princeton University Press, 2003.
[6] J. Math. Biol. 1976 5 7
[7] Am. Natur. 1995 343 375
,[8] Mem. Accad. Nazionale Lincei 1926 31 113
[9] A.J. Lotka . Elements of Mathematical Biology. New York, Dover, 1958.
[10] Nonlinearity 2006 2391 2404
, , , ,[11] Nonlin Dyn 2010 411 422
,[12] Nonlinearity 2002 2019 2032
,[13] Nonlinearity 1988 51 71
[14] J. Differ. Equ. 1989 94 106
[15] SIAM J. Math. Anal. 1990 1225 1234
[16] Dyn. Stab. Sys. 1993 189 217
[17] Appl. Math. Lett. 2006 1 7
, ,[18] Appl. Math. Lett. 1994 65 70
,[19] Comput. Math. Appl. 2003 231 238
,[20] SIAM J. Appl. Math. 1975 243 253
,[21] SIAM J. Appl. Math. 1998 227 234
,[22] J. Differ. Equ. 2000 1 15
,[23] Phys. Lett. A 1980 259 263
, ,[24] J. Math. Biol. 1982 153 157
, , ,[25] Ecology 1991 896 903
,[26] J. Math. Biol. 1994 427 451
,[27] Ecology 1994 561 564
,[28] Ecol. Model. 2001 285 295
,[29] Non. Anal. Hyb. Syst. 2009 195 206
, ,[30] S.L. Pimm. The balance of nature ? Ecological issue in the conservation of species and communities. University of Chicago Press, Chicago, 1991.
[31] Nature 1985 355 358
[32] Physica A 2012 1216 1233
,[33] J. Roy. Statist. Soc. B. 1992 399 426
, , ,[34] J. Appl. Math. Comput. 2008 433 450
[35] Physica. A. 2004 477 486
, ,[36] Phys. Rev. E. 2001
,[37] Phys. Rev. E. 1997 4084 4094
, , ,[38] Phys. Rev. E. 2003 031907
[39] Phys. Rev. E. 2001 011106
,[40] J. Theor. Biol. 1989 311 326
,[41] M. Bandyopadhyay, R. Bhattacharya, C.G. Chakrabarti. A nonlinear two species oscillatory system: Bifurcation and stability analysis. Int. J. Math. Sci., (2003) 1981–1991.
[42] C.S. Elton. The pattern of Animal Communities. London, Methuen, 1966.
[43] W. Horsthemke, R. Lefever. Noise Induced Transitions. Springer-Verlag, Berlin, 1984.
[44] C.W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, New York, 1983.
[45] T.C.Gard. Introduction to Stochastic Differential Equations. Marcel Decker, New York, 1987.
[46] I.I. Gikhman, A.V. Skorokhod. The Theory of Stochastic Process-I. Berlin, Springer, 1979.
[47] Stoc. Proc. Appl. 2002 95 110
, ,[48] SIAM Rev. 2001 525 546
[49] Appl. Math. Lett. 2002 355 360
,[50] Math. Comp. Model. 2002 691 716
,[51] L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley, New York, 1972.
[52] X. Mao. Stochastic Differential Equations and Applications. Horwood, New York, 1997.
[53] R.Z. Khasminskii. Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen a/d Rijn, 1981.
[54] X. Mao. Stability of Stochastic Differential Equations with respect to Semimartingales. Longman Scientific and Technical, New York, 1991.
[55] X. Mao. Exponential Stability of Stochastic Differential Equations. Marcel Dekker, New York, 1994.
[56] J. Math. Anal. Appl. 2008 1084 1101
, ,[57] E. Allen. Modeling With Itô Stochastic Differential Equations. Dordrecht, The Netherlands, 2007.
[58] V. Hutson, J.S. Pym. Applications of Functional Analysis and Operator Theory. Academic Press, London, 1980.
[59] A.N. Kolmogorov, S. V. Fomin. Introductory Real Analysis. Dover Publications, Inc., New York, 1970.
[60] Bull. Math. Biol. 2011 1969 2012
, ,[61] P.S. Mandal, M. Banerjee. Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model. Math. Model. Nat. Phenom., (In press), (2012).
Cité par Sources :