Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 65-77.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we give a survey on modeling efforts concerning the CVRS. The material we discuss is organized in accordance with modeling goals and stresses control and transport issues. We also address basic modeling approaches and discuss some of the challenges for mathematical modeling methodologies in the context of parameter estimation and model validation.
DOI : 10.1051/mmnp/20127506

F. Kappel 1, 2, 3

1 Center for Quantitative Sciences in Biomedicine, North Carolina State University Raleigh, NC 27695-8213
2 Center for Research in Scientific Computation, North Carolina State University Raleigh, NC 27695-8212
3 Institute for Mathematics and Scientific Computation, University of Graz A 8010 Graz, Austria
@article{MMNP_2012_7_5_a5,
     author = {F. Kappel},
     title = {Modeling the {Dynamics} of the {Cardiovascular-respiratory} {System} {(CVRS)} in {Humans,} a {Survey}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2012},
     doi = {10.1051/mmnp/20127506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127506/}
}
TY  - JOUR
AU  - F. Kappel
TI  - Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 65
EP  - 77
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127506/
DO  - 10.1051/mmnp/20127506
LA  - en
ID  - MMNP_2012_7_5_a5
ER  - 
%0 Journal Article
%A F. Kappel
%T Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey
%J Mathematical modelling of natural phenomena
%D 2012
%P 65-77
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127506/
%R 10.1051/mmnp/20127506
%G en
%F MMNP_2012_7_5_a5
F. Kappel. Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 65-77. doi : 10.1051/mmnp/20127506. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127506/

[1] V. Agoshkov, A. Quarteroni, G. Rozza SIAM Journal on Numerical Analysis 2006 367 384

[2] J. Alastruey, K. H. Parker, J. Peiró, S. Sherwin Communications in Computational Physics 2008 2 19

[3] J. Alfon, T. Royo, X. Garcia-Moll, L. Badimon Arterioscler. Thromb. Vasc. Biol. 1999 1812 1817

[4] A. Attarian, J. Batzel, B. Matzuka, H. T. Tran. Application of the unscented Kalman filtering to parameter estimation. Mathematical Model Development and Validation in Physiology : Application to the Cardiovascular and Respiratory Systems, J. J. Batzel, M. Bachar, and F. Kappel, eds., vol. 2064 of Lecture Notes in Mathematics, Berlin, 2012, Springer-Verlag.to appear.

[5] E. O. Attinger Investigative Ophthalmology 1965 973 987

[6] H. T. Banks, A. Cintrón-Arias, F. Kappel. Parameter selection methods in inverse problem formulation. Mathematical Modeling and Validation in Physiology : Application to the Cardiovascular and Respiratory Systems, J. J. Batzel, M. Bachar, F. Kappel, eds., vol. 2064 of Lecture Notes in Mathematics, Berlin, 2012, Springer-Verlag.to appear.

[7] H. T. Banks, S. Dediu, S. Ernstberger, F. Kappel J. Inverse and Ill-Posed Problems 2010 25 83

[8] H.T. Banks, K. Holm, F. Kappel Inverse Problems 2011

[9] H. T. Banks, K. Holm, F. Kappel J. Inverse and Ill-Posed Problems 2012 1 38

[10] J. Batzel, M. Fink, F. Kappel. Modeling the human cardiovascular-respiratory control response to blood volume loss due to hemorrhage. Positive Systems. C. Commault, N. Marchand, eds., vol. 341 of Lecture Notes in Control and Information Sciences, Berlin, 2006, Springer-Verlag, 145–152.

[11] J. J. Batzel, M. Bachar, V. Bhalani, F. Kappel, P. Kotanko, J. Raiman. Haemodynamics, Chapter 10, “Mathematical Physiology” (A. De Gaetano and P. Palumbo, Eds.), Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford, UK, 2008.

[12] J. J. Batzel, M. Bachar, F. Kappel.The Circulatory System. Chapter 9, “Mathematical Physiology” (A. De Gaetano and P. Palumbo, Eds.), Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford, UK, 2008.

[13] J. J. Batzel, M. Bachar, F. Kappel. Respiration and Gas Exchange, Chapter 12, “Mathematical Physiology” (A. De Gaetano and P. Palumbo, Eds), Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford, UK, 2008.

[14] J. J. Batzel, N. Goswami, H. K. Lackner, A. Roessler, M. Bachar, F. Kappel, H. Hinghofer-Szalkay Cardiovascular Engineering : An international Journal 2009 134 143

[15] J. J. Batzel, F. Kappel, D. Schneditz, H. T. Tran.Cardiovascular and Respiratory Systems : Modeling, Analysis and Control. vol. 34 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 2007.

[16] M. P. F. Berger, W. K. Wong, eds., Applied Optimal Designs, John Wiley Sons, Chichester, UK, 2005.

[17] M. J. Bishop, G. Plank, E. Vigmond Circ Arrhythm Electrophysiol 2012 210 219

[18] A. Brunberg, S. Heinke, J. Spillner, R. Autschbach, D. Abel, S. Leonhardt Biomed. Tech. 2009 233 244

[19] S. Cavalcanti, S. Cavani, A. Ciandrini, G. Avanzolini Computers in Biology and Medicine 2006 128 144

[20] S. Cavalcanti, S. Cavani, A. Santoro Kidney International 2002 228 238

[21] S. Cavalcanti, A. Ciandrini, S. Severi, F. Badiali, S. Bini, A. Gattiani, L. Cagnoli, A. Santoro Kidney International 2004 1499 1510

[22] S. Cavalcanti, L. Y. Di Marco Artif. Organs 1999 1063 1073

[23] S. Cavani, S. Cavalcanti, G. Avanzolini ASAIO Journal 2001 377 388

[24] P. Crosetto, S. Deparis, G. Fourestey, A. Quarteroni SIAM Journal on Scientific Computing 2011 1598 1622

[25] C. D’Angelo, A. Quarteroni Mathematical Models and Methods in Applied Sciences 2008 1481 1504

[26] M. Danielsen, J. T. Ottesen. A dynamical approach to the baroreceptor regulation of the cardiovascular system. Proceeding to the 5th International Symposium, Symbiosis ’97, 1997, 25 – 29.

[27] M. Danielsen, J. T. Ottesen J. Theor. Biol. 2001 71 81

[28] A. De Los Reyes V, F. Kappel Mathematica Balcanica, New Series 2010 229 242

[29] A. A. de los Reyes V. A mathematical model for the cardiovascular system with a measurable pulsatile pressure output. PhD thesis, University of Graz, Graz (Austria), March 2010.

[30] R. Fåhræus, T. Lindqvist Am. J. Physiol. 1931 562 568

[31] V. V. Fedorov, P. Hackel. Model-Oriented Design of Experiments. Springer-Verlag, New York, NY, 1997.

[32] G. D. Fink Clin. Exp. Pharmacol. Physiol. 2005 377 383

[33] M. Fink, A. Attarian, H. T. Tran Proc. Applied Math. and Mechanics 2008 11212

[34] A. Fishman, N. Cherniack, J. Widdicombe, A. P. Society, Handbook of Physiology : A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. The respiratory system. Control of breathing, / volume editors, Neil S. Cherniack, John G. Widdicombe / executive editor, Stephen R. Geiger, American Physiological Society, 1986.

[35] L. Formaggia, J. F. Gerbeau, F. Nobile, A. Quarteroni Computer Methods in Applied Mechanics and Engineering 2001 561 582

[36] G. C. Goodwin, R. L. Payne. Dynamic System Identification, Experimental Design and Data Analysis. vol. 136 of Mathematics in Science and Engineering, Academic Press, New York, 1977.

[37] N. Goswami, H. Lackner, I. Papousek, J. P. Montani, D. D. Jezova, H. Hinghofer-Szalkay Acta Astronautica 2011 1589 1594

[38] D. M. Gu, S. C. Eisenstat SIAM J. Sci. Comput. 1996 848 869

[39] A. C. Guyton, Textbook of Medical Physiology, W. B. Saunders Company, Philadelphia, Pa, 8 ed., 1991.

[40] A. C. Guyton, J. E. Hall, Guyton Hall Textbook of Medical Physiology, Saunders/Elsevier, Philadelphia, Pa, 11 ed., 2005.

[41] M. Habib. Control of the Human Cardiovascular-Respiratory System under a Time-Varying Ergonometric Workload. PhD thesis, University of Graz, Graz (Austria), May 2011.

[42] T. Heldt, E. B. Shim, R. D. Kamm, R. G. Mark J. Appl. Physiol. 2002 1239 1254

[43] F. C. Hoppensteadt, C. S. Peskin. Mathematics in Medicine and the Life Sciences. vol. 10 of Texts in Applied Mathematics, Springer Verlag, New York, NY, 1992.

[44] F. Kappel, J. J. Batzel. Survey of research in modeling the human respiratory and cardiovascular systems. Research Directions in Distributed Parameter Systems, R. C. Smith and M. A. Demetriou, eds., vol. 27 of Frontiers in Applied Mathematics, SIAM, Philadelphia, Pa, 2003, ch. 8, 187–218.

[45] F. Kappel, M. Fink, J. Batzel Math. Biosciences 2007 273 308

[46] F. Kappel, S. Lafer, R. O. Peer Surv. Math. Ind. 1997 239 250

[47] F. Kappel, R. O. Peer J. Math. Biol. 1993 611 631

[48] J. Keener, J. Sneyd, Mathematical Physiology, Vol II : Systems Physiology, vol. 8 of Interdisciplinary Applied Mathematics, Springer Verlag, New York, 2nd ed., 2008.

[49] T. Kenner. Physiology of circulation. Cardiology, 1st ed., S. D. Volta, E. Braunwald, A. B. D. Luna, V. Jezek, M. L. Brochier, S. A. Mortensen, F. Dienstl, P. A. Poole-Wilson, eds., Clinical Medicine, New York, 1999, McGraw-Hill, 15–25.

[50] R. C. P. Kerckhoffs, ed.. Patient-Specific Modeling of the Cardiovascular System, Technology-Driven Personalized Medicine, Springer-Verlag, New York, 2010.

[51] A. S. Kholodov, S. S. Simakov, A. V. Evdokimov, Y. A. Kholodov.Matter transport simulations using 2D model of peripheral circulation coupled with the model of large vessels. Proc. II Int. Conf. On Comput. Bioeng., September 14-16, Lisbon, H. Rodrigues, M. Cerrolaza, M. Doblaré, J. Ambrósio, and M. Viceconti, eds., vol. 1, Lisbon, 2005, IST Press, 479–490.

[52] R. E. Klabunde. Cardiovascular Physiology Concepts. Lippincott Williams Wilkins, Baltimore, Md, 2005.

[53] P. Kuijper, H. G. Torres, J.-W. Lammers, J. Sixma, L. Koenderman, J. Zwaginga Blood 1997 166 175

[54] J. R. Levick. An Introduction to Cardiovascular Physiology. Oxford Univ. Press, New York, 4th ed., 2003.

[55] S. L. Mabry, L. F. Bic, K. M. Baldwin. CVSys : a coordination framework for dynamic and fully distributed cardiovascular modeling and simulation. Biomedical Sensing and Imaging Technologies, R. A. Lieberman and T. Vo-Dinh, eds., vol. 3253 of Proc. SPIE, 1998, 208–218.

[56] R. Mittal, G. Iaccarino Annual Rev. Fluid Mech. 2005 239 261

[57] M. E. C. Mutsaers, M. Bachar, J. J. Batzel, F. Kappel, S. Volkwein Cardiovascular Engineering : An international Journal 2008 14 22

[58] S. Muzdeka, E. Barbieri. Control theory inspired considerations of the mathematical models of defibrillation. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, IEEE Conderence Publications, 2005, 7416–7421.

[59] S. Neumann. Modeling Acute Hemorrhage in the Human Cardiovascular System. PhD thesis, University of Pennsylvania, Pensylvania, 1996.

[60] P. Novak, V. Novak, J. Spies, V. Gordon, T. Lagerlund, G. Petty. Evaluation of cerebral autoregulation in orthostatic hypotension and POTS. Clin. Auton. Res., 7 (1997), p. 238.

[61] V. Novak, P. Novak, J. M. Spies, P. A. Low Stroke 1998 104 111

[62] M. S. Olufsen. Modeling flow and pressure in systemic arteries. Applied Mathematical Models in Human Physiology, J. T. Ottesen, M. Olufsen, and J. K. Larsen, eds., SIAM Monographs on Mathematical Modeling and Computation, SIAM, Philadelphia, Pa, 2004, ch. 5, 91–136.

[63] M. S. Olufsen, A. Nadim, L. A. Lipsitz Am. J. Physiol. 2002 R611 R622

[64] M. S. Olufsen, J. T. Ottesen, H. T. Tran J. Cardiov. Eng. 2004 47 58

[65] M. S. Olufsen, J. T. Ottesen, H. T. Tran, L. M. Ellwein, L. A. Lipsitz, V. Novak J. Appl. Physiol. 2005 1523 1537

[66] J. T. Ottesen J. Math. Biol. 1997 41 63

[67] J. T. Ottesen, M. Danielsen, eds., Mathematical Modelling in Medicine, vol. 71 of Studies in Health Technology and Informatics, IOS Press, Amsterdam, 2000.

[68] J. T. Ottesen, M. S. Olufsen, J. K. Larsen, eds., Applied Mathematical Models in Human Physiology, Monographs on Mathematical Modeling and Computation, SIAM, Philadelphia, 2004.

[69] T. Passerini, M. De Luca, L. Formaggia, A. Quarteroni, A. Veneziani Journal of Engineering Mathematics 2009 319

[70] A. Pázman. Foundations of Optimum Experimental Design, Mathematics and Its Applications. D. Reidel Publ. Comp., Dordrecht, 1986.

[71] K. Perktold, M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, M. H. Friedman J. Biomech. 1998 217 228

[72] K. Perktold, G. Rappitsch Technol. Health Care 1995 139

[73] C. S. Peskin. Flow Patterns around Heart Valves. PhD thesis, Albert Einstein College of Medicine, New York, 1972.

[74] C. S. Peskin, D. M. Mcqueen J. Comput. Phys. 1980 113 132

[75] C. S. Peskin, D. M. McQueen. Cardiac fluid dynamics. High-performance Computing in Biomedical Research, T. C. Pilkington et al., ed., CRC Press, Boca Raton, 1993.

[76] C. S. Peskin, D. M. Mcqueen Am. J. Physiol. 1994 H319 H328

[77] C. S. Peskin, D. M. McQueen.Fluid dynamics of the heart and its valves, in Case Studies in Mathematical Modeling – Ecology, Physiology, and Cell Biology, H. G. Othmer, F. R. Adler, M. A. Lewis, J. C. Dallon, eds., Prentice Hall, Englewood Cliffs, New Jersey, 1996, ch. 14, 309–337.

[78] C. S. Peskin, B. F. Printz J. Comput. Phys. 1993 33 46

[79] S. R. Pope, L. M. Ellwein, C. L. Zapata, V. Novak, C. T. Kelley, M. S. Olufsen Mathematical Biosciences and Engineering 2009 93 115

[80] M. Prosi, P. Zunino, K. Perktold, A. Quarteroni Journal of Biomechanics 2005 903 917

[81] F. Pukelsheim. Optimal Design of Experiments. JohnWiley Sons, New York, NY, 1993.

[82] A. Quarteroni, A. Veneziani, P. Zunino SIAM Journal on Numerical Analysis 2001 1488

[83] L. B. Rowell. Human Cardiovascular Control. Oxford University Press, New York, 1993.

[84] G. A. F. Seber, C. J. Wild, Nonlinear Regression.Wiley Series in Probability and Mathematical Statistics. J. Wiley, New York, 1989.

[85] B. W. Smith, J. G. Chase, G. M. Shaw, R. I. Nokes Control Engineering Practice 2005 1183 1193

[86] J. Smith, J. Kampine.Circulatory Physiology. Williams, Wilkins, Baltimore, 1990.

[87] W.-B. Tay, Y.-H. Tseng, L.-Y. Lin, W.-Y. Tseng. Towards patient-specific cardiovascular modeling system using the immersed boundary technique. BioMedical Engineering OnLine, 10 (2011).

[88] W. D. Timmons.Cardiovascular models and control. “The Biomedical Engineering Handbook” (Chapter 160), J. D. Branzino, ed., Boca Raton, 2000, CRC Press LLC.

[89] N. Trayanova, G. Plank, B. Rodríguez Heart Rhythm 2006 1232 1235

[90] R. F. Tuma, W. N. Duràn, K. Ley, eds.. Microcirculation. Elsevier, Amsterdam, 2 ed., 2008.

[91] D. Ucinski, A. Atkinson. Experimental design for time-dependent models with correlated observations. Studies in Nonlinear Dynamics and Econometrics, 8 (2004).

[92] M. Ursino Am. J. Physiol. 1998 H1733 H1747

[93] M. Ursino IEEE Trans. Biomed. Eng. 1999 382 392

[94] M. Ursino, A. Fiorenzi, E. Belardinelli Comput. Biol. Med. 1996 297 314

[95] M. Ursino, M. Innocenti Artif. Organs 1997 891 902

[96] M. Ursino, M. Innocenti Artif. Organs 1997 873 890

[97] F. Vadakkumpadan, L. J. Rantner, B. Tice, P. Boyle, A. J. Prassl, E. Vigmond, G. Plank, N. Trayanova J Electrocardiol 2009 157

[98] N. Westerhof, N. Stergiopulos. Models of the arterial tree. Mathematical Modelling in Medicine, J. T. Ottesen, M. Danielsen, eds., vol. 71 of Studies in Health Technology and Informatics, Amsterdam, The Netherlands, 2000, IOS Press, 65–78.

[99] N. Westerhof, N. Stergiopulos, M. I. M. Noble. Snapshots of Hemodynamics. vol. 18 of Basic Science for the Cardiologist, Kluwer Academic Publishers, Dordrecht, 2005.

Cité par Sources :