Propagation of Growth Uncertainty in a Physiologically Structured Population
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 7-23.

Voir la notice de l'article provenant de la source EDP Sciences

In this review paper we consider physiologically structured population models that have been widely studied and employed in the literature to model the dynamics of a wide variety of populations. However in a number of cases these have been found inadequate to describe some phenomena arising in certain real-world applications such as dispersion in the structure variables due to growth uncertainty/variability. Prompted by this, we described two recent approaches that have been investigated in the literature to describe this growth uncertainty/variability in a physiologically structured population. One involves formulating growth as a Markov diffusion process while the other entails imposing a probabilistic structure on the set of possible growth rates across the entire population. Both approaches lead to physiologically structured population models with nontrivial dispersion. Even though these two approaches are conceptually quite different, they were found in [] to have a close relationship: in some cases with properly chosen parameters and coefficient functions, the resulting stochastic processes have the same probability density function at each time.
DOI : 10.1051/mmnp/20127503

H.T. Banks 1 ; S. Hu 1

1 Center for Research in Scientific Computation, Center for Quantitative Sciences in Biomedicine North Carolina State University, Raleigh, NC 27695-8212 USA
@article{MMNP_2012_7_5_a2,
     author = {H.T. Banks and S. Hu},
     title = {Propagation of {Growth} {Uncertainty} in a {Physiologically} {Structured} {Population}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {7--23},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2012},
     doi = {10.1051/mmnp/20127503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127503/}
}
TY  - JOUR
AU  - H.T. Banks
AU  - S. Hu
TI  - Propagation of Growth Uncertainty in a Physiologically Structured Population
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 7
EP  - 23
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127503/
DO  - 10.1051/mmnp/20127503
LA  - en
ID  - MMNP_2012_7_5_a2
ER  - 
%0 Journal Article
%A H.T. Banks
%A S. Hu
%T Propagation of Growth Uncertainty in a Physiologically Structured Population
%J Mathematical modelling of natural phenomena
%D 2012
%P 7-23
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127503/
%R 10.1051/mmnp/20127503
%G en
%F MMNP_2012_7_5_a2
H.T. Banks; S. Hu. Propagation of Growth Uncertainty in a Physiologically Structured Population. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 7-23. doi : 10.1051/mmnp/20127503. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127503/

[1] A.S. Ackleh, H.T. Banks, K. Deng Nonlinear Analysis 2002 727 748

[2] A.S. Ackleh, K. Ito Numer. Funct. Anal. Optim. 1997 65 884

[3] A.S. Ackleh, K. Deng Quart. Appl. Math. 1999 261 267

[4] O. Angulo Applied Numerical Mathematics 2004 291 327

[5] H.T. Banks. A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press/Taylor and Frances Publishing, Boca Raton, FL, June, 2012, (258 pages).

[6] H.T. Banks, K.L. Bihari Inverse Problems 2001 95 111

[7] H.T. Banks, V.A. Bokil, S. Hu, A.K. Dhar, R.A. Bullis, C.L. Browdy, F.C.T. Allnutt CRSC-TR05-45, NCSU, December, 2005  2006 635 660

[8]

[9] H.T. Banks, F. Charles, M. Doumic, K.L. Sutton, W.C. Thompson Appl. Math. Letters 2010 1412 1415

[10] H.T. Banks, J.L. Davis CRSC-TR05-38, October, 2005  2007 753 777

[11] H.T. Banks, J.L. Davis CRSC-TR07-21, December, 2007  2008 647 667

[12] H.T. Banks, J.L. Davis, S.L. Ernstberger, S. Hu, E. Artimovich, A.K. Dhar, C.L. Browdy CRSC-TR08-03, NCSU, February, 2008  2009 130 148

[13]

[14]

[15] H.T. Banks, B.G. Fitzpatrick Quarterly of Applied Mathematics 1991 215 235

[16]

[17] H.T. Banks, S. Hu CRSC-TR11-02, NCSU, January, 2011  2012 1 25

[18] H.T. Banks, F. Kappel Semigroup Forum 1989 141 155

[19] H.T. Banks, F. Kappel, C. Wang International Series of Numerical Mathematics 1991 35 50

[20] H.T. Banks, G.A. Pinter CRSC-TR04-03, January, 2004  2005 395 412

[21] H.T. Banks, K.L. Sutton, W.C. Thompson, G. Bocharov, M. Doumic, T. Schenkel, J. Argilaguet, S. Giest, C. Peligero, A. Meyerhans Center for Research in Scientific Computation Technical Report CRSC-TR11-05, NCSU, July, 2011  2011 143 160

[22] H.T. Banks, K.L. Sutton, W.C. Thompson, G. Bocharov, D. Roose, T. Schenkel, A. Meyerhans CRSC-TR09-17, NCSU, August, 2009  2011 116 150

[23]

[24] H.T. Banks, W.C. Thompson CRSC-TR12-12, N. C. State University, Raleigh, NC, May, 2012  2012 119 147

[25]

[26] H.T. Banks, H.T. Tran, D.E. Woodward SIAM J. Numer. Anal. 1993 1574 1602

[27] G.I. Bell, E.C. Anderson Biophysical Journal 1967 329 351

[28] A. Calsina, J. Saldana Journal of Mathematical Biology 1995 335 364

[29] G. Casella, R.L. Berger. Statistical Inference. Duxbury, California, 2002.

[30] F.L. Castille, T.M. Samocha, A.L. Lawrence, H. He, P. Frelier, F. Jaenike Aquaculture 1993 65 81

[31] J. Chu, A. Ducrot, P. Magal, S. Ruan J. Differential Equations 2009 956 1000

[32] J.M. Cushing. An Introduction to Structured Population Dynamics. CMB-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1998.

[33] T.C. Gard. Introduction to Stochastic Differential Equations. Marcel Dekker, New York, 1988.

[34] C.W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, Berlin, 1983.

[35] M. Gyllenberg, G.F. Webb J. Math. Biol. 1990 671 694

[36] G.W. Harrison Numerical Methods for Partial Differential Equations 1988 219 232

[37] J. Hasenauer, D. Schittler, F. Allgöer. A computational model for proliferation dynamics of division- and label-structured populations. February, 2012, preprint.

[38] J. Hasenauer, S. Waldherr, M. Doszczak, P. Scheurich, N. Radde, F. Allgöer 2011 1417 1425

[39] K. Huang. Statistical Mechanics. J. Wiley Sons, New York, NY, 1963.

[40] M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Applied Math. Monographs, CNR, Giardini Editori e Stampatori, Pisa, 1995.

[41] M. Kimura Genetics 1954 280 295

[42] F. Klebaner. Introduction to Stochastic Calculus with Applications. 2nd ed., Imperial College Press, London, 2006.

[43] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer, New York, 1991.

[44] T. Luzyanina, D. Roose, G. Bocharov J. Math. Biol. 2009 581 603

[45] T. Luzyanina, M. Mrusek, J.T. Edwards, D. Roose, S. Ehl, G. Bocharov J. Math. Biol. 2007 57 89

[46] T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov. Numerical modelling of label-structured cell population growth using CFSE distribution data. Theoretical Biology and Medical Modelling, 4(2007), Published Online.

[47] A.G. Mckendrick Proceedings of the Edinburgh Mathematical Society 1926 98 130

[48] J.A.J. Metz, E.O. Diekmann, The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, Vol. 68, Springer, Heidelberg, 1986.

[49] J.E. Moyal Journal of the Royal Statistical Society. Series B (Methodological) 1949 150 210

[50] Yu. V. Prohorov Theor. Prob. Appl. 1956 157 214

[51] B. Oksendal. Stochastic Differentail Equations. 5th edition, Springer, Berlin, 2000.

[52] A. Okubo. Diffusion and Ecological Problems : Mathematical Models. Biomathematics, 10 (1980), Springer-Verlag, Berlin.

[53] G. Oster, Y. Takahashi Ecological Monographs 1974 483 501

[54] B. Perthame. Transport Equations in Biology. Birkhauser Verlag, Basel, 2007.

[55] R. Rudnicki. Models of population dynamics and genetics. From Genetics To Mathematics, (edited by M. Lachowicz and J. Miekisz), World Scientific, Singapore, 2009, 103–148.

[56] H. Risken. The Fokker-Planck Equation : Methods of Solution and Applications. Springer, New York, 1996.

[57] D. Schittler, J. Hasenauer, F. Allgöer. A generalized population model for cell proliferation : Integrating division numbers and label dynamics. Proceedings of Eighth International Workshop on Computational Systems Biology (WCSB 2011), June 2011, Zurich, Switzerland, 165–168.

[58] D. Schittler, J. Hasenauer, F. Allgöer. A model for proliferating cell populations that accounts for cell types. Proc. of 9th International Workshop on Computational Systems Biology, 2012, 84–87.

[59] J. Sinko, W. Streifer Ecology 1967 910 918

[60] T.T. Soong. Random Differential Equations in Science and Engineering. Academic Press, New York and London, 1973.

[61] T.T. Soong, S.N. Chuang SIAM J. Appl. Math. 1973 449 459

[62] W.C. Thompson. Partial Differential Equation Modeling of Flow Cytometry Data from CFSE-based Proliferation Assays. Ph.D. Dissertation, North Carolina State University, December, 2011.

[63] H. Von Foerster. Some remarks on changing populations. The Kinetics of Cellular Proliferation, F. Stohlman, Jr. (ed.), Grune and Stratton, New York, 1959.

[64] G.F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York, 1985.

[65] A.Y. Weiße, R.H. Middleton, W. Huisinga BMC Syst. Bio. 2010

[66] G.H. Weiss Bull. Math. Biophy. 1968 427 435

[67] http://en.wikipedia.org/wiki/Probability_density_function.

Cité par Sources :