Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20127404,
author = {M. Malik-Garbi and O. Agam},
title = {A {Discrete} {Model} {For} {Pattern} {Formation} {In} {Volatile} {Thin} {Films}},
journal = {Mathematical modelling of natural phenomena},
pages = {39--52},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2012},
doi = {10.1051/mmnp/20127404},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/}
}
TY - JOUR AU - M. Malik-Garbi AU - O. Agam TI - A Discrete Model For Pattern Formation In Volatile Thin Films JO - Mathematical modelling of natural phenomena PY - 2012 SP - 39 EP - 52 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/ DO - 10.1051/mmnp/20127404 LA - en ID - 10_1051_mmnp_20127404 ER -
%0 Journal Article %A M. Malik-Garbi %A O. Agam %T A Discrete Model For Pattern Formation In Volatile Thin Films %J Mathematical modelling of natural phenomena %D 2012 %P 39-52 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/ %R 10.1051/mmnp/20127404 %G en %F 10_1051_mmnp_20127404
M. Malik-Garbi; O. Agam. A Discrete Model For Pattern Formation In Volatile Thin Films. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 39-52. doi: 10.1051/mmnp/20127404
[1] , Phys. Rev. Lett. 1994 3562 3565
[2] Physica Scripta 1996 63 66
[3] , , Langmuir 2004 291 194
[4] Phase Transitions 2004 677 688
[5] , Langmuir 2004 8423 8425
[6] , , Phys. Rev. 1998 2906 2913
[7] , Quart. J. Mech. Appl. Math. 1959 265 279
[8] , Phys. Rev. 1983 5686 5697
[9] , , , Europhys. Lett. 2006 257 263
[10] , , , , Phys. Rev. Lett. 1989 984 987
[11] , , , Phys. Rev. 1996 6200 6223
[12] , , , Phys. Rev. 2003 020401
[13] , Physica, D 1998 244 252
[14] Phys. Rev. 2009 021603
[15] , Phys. Rev. Lett. 2010 047801
[16] , Fluid Dyn. 1992 169 176
[17] J. Phys. 1976 1465 1477
[18] J. Physique 1985 1469 1483
[19] Phys., A 1994 2633 2652
[20] , Phys. Rev Lett. 1996 4780 4783
[21] Here the Hamiltonian which defines the evolution does not account for the constraint that A particle cannot be born on a site ocuupied by B particle. This constraint can be taken into account by replcing the term with , where Θ(x) is the haviside function and ϵ is a positive infintesimal number.
Cité par Sources :