Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_4_a3, author = {M. Malik-Garbi and O. Agam}, title = {A {Discrete} {Model} {For} {Pattern} {Formation} {In} {Volatile} {Thin} {Films}}, journal = {Mathematical modelling of natural phenomena}, pages = {39--52}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2012}, doi = {10.1051/mmnp/20127404}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/} }
TY - JOUR AU - M. Malik-Garbi AU - O. Agam TI - A Discrete Model For Pattern Formation In Volatile Thin Films JO - Mathematical modelling of natural phenomena PY - 2012 SP - 39 EP - 52 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/ DO - 10.1051/mmnp/20127404 LA - en ID - MMNP_2012_7_4_a3 ER -
%0 Journal Article %A M. Malik-Garbi %A O. Agam %T A Discrete Model For Pattern Formation In Volatile Thin Films %J Mathematical modelling of natural phenomena %D 2012 %P 39-52 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/ %R 10.1051/mmnp/20127404 %G en %F MMNP_2012_7_4_a3
M. Malik-Garbi; O. Agam. A Discrete Model For Pattern Formation In Volatile Thin Films. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 39-52. doi : 10.1051/mmnp/20127404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/
[1] Phys. Rev. Lett. 1994 3562 3565
,[2] Physica Scripta 1996 63 66
[3] Langmuir 2004 291 194
, ,[4] Phase Transitions 2004 677 688
[5] Langmuir 2004 8423 8425
,[6] Phys. Rev. 1998 2906 2913
, ,[7] Quart. J. Mech. Appl. Math. 1959 265 279
,[8] Phys. Rev. 1983 5686 5697
,[9] Europhys. Lett. 2006 257 263
, , ,[10] Phys. Rev. Lett. 1989 984 987
, , , ,[11] Phys. Rev. 1996 6200 6223
, , ,[12] Phys. Rev. 2003 020401
, , ,[13] Physica, D 1998 244 252
,[14] Phys. Rev. 2009 021603
[15] Phys. Rev. Lett. 2010 047801
,[16] Fluid Dyn. 1992 169 176
,[17] J. Phys. 1976 1465 1477
[18] J. Physique 1985 1469 1483
[19] Phys., A 1994 2633 2652
[20] Phys. Rev Lett. 1996 4780 4783
,[21] Here the Hamiltonian which defines the evolution does not account for the constraint that A particle cannot be born on a site ocuupied by B particle. This constraint can be taken into account by replcing the term with , where Θ(x) is the haviside function and ϵ is a positive infintesimal number.
Cité par Sources :