A Discrete Model For Pattern Formation In Volatile Thin Films
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 39-52.

Voir la notice de l'article provenant de la source EDP Sciences

We introduce a model, similar to diffusion limited aggregation (DLA), which serves as a discrete analog of the continuous dynamics of evaporation of thin liquid films. Within mean field approximation the dynamics of this model, averaged over many realizations of the growing cluster, reduces to that of the idealized evaporation model in which surface tension is neglected. However fluctuations beyond the mean field level play an important role, and we study their effect on the conserved quantities of the idealized evaporation model. Assuming the cluster to be a fractal, a heuristic approach is developed in order to explain the distinctive increase of the fractal dimension with the cluster size.
DOI : 10.1051/mmnp/20127404

M. Malik-Garbi 1 ; O. Agam 1

1 The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
@article{MMNP_2012_7_4_a3,
     author = {M. Malik-Garbi and O. Agam},
     title = {A {Discrete} {Model} {For} {Pattern} {Formation} {In} {Volatile} {Thin} {Films}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2012},
     doi = {10.1051/mmnp/20127404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/}
}
TY  - JOUR
AU  - M. Malik-Garbi
AU  - O. Agam
TI  - A Discrete Model For Pattern Formation In Volatile Thin Films
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 39
EP  - 52
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/
DO  - 10.1051/mmnp/20127404
LA  - en
ID  - MMNP_2012_7_4_a3
ER  - 
%0 Journal Article
%A M. Malik-Garbi
%A O. Agam
%T A Discrete Model For Pattern Formation In Volatile Thin Films
%J Mathematical modelling of natural phenomena
%D 2012
%P 39-52
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/
%R 10.1051/mmnp/20127404
%G en
%F MMNP_2012_7_4_a3
M. Malik-Garbi; O. Agam. A Discrete Model For Pattern Formation In Volatile Thin Films. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 39-52. doi : 10.1051/mmnp/20127404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127404/

[1] M. Elbaum, S.G. Lipson Phys. Rev. Lett. 1994 3562 3565

[2] S.G. Lipson Physica Scripta 1996 63 66

[3] I. Leizerson, S.G. Lipson, A.V. Lyushnin Langmuir 2004 291 194

[4] S. G. Lipson Phase Transitions 2004 677 688

[5] I. Leizerson, S.G. Lipson Langmuir 2004 8423 8425

[6] N. Samid-Merzel, S.G. Lipson, D.S. Tannhauser Phys. Rev. 1998 2906 2913

[7] G. Taylor, P.G. Saffman Quart. J. Mech. Appl. Math. 1959 265 279

[8] T.A. Witten, L.M. Sander Phys. Rev. 1983 5686 5697

[9] J. Mathiesen, I. Procaccia, H. L. Swinney, M. Thrasher Europhys. Lett. 2006 257 263

[10] A. Arneodo, Y. Couder, G. Grasseau, V. Hakim, M. Rabaud Phys. Rev. Lett. 1989 984 987

[11] A. Arneodo, J. Elezgaray, M. Tabard, F. Tallet Phys. Rev. 1996 6200 6223

[12] E. Somfai, R.C. Ball, J.P. Devita, L.M. Sander Phys. Rev. 2003 020401

[13] M.B. Hastings, L.S. Levitov Physica, D 1998 244 252

[14] O. Agam Phys. Rev. 2009 021603

[15] H. Diamant, O. Agam Phys. Rev. Lett. 2010 047801

[16] V.M. Entov, P.I. Étingof Fluid Dyn. 1992 169 176

[17] M. Doi J. Phys. 1976 1465 1477

[18] L. Peliti J. Physique 1985 1469 1483

[19] B. P. Lee Phys., A 1994 2633 2652

[20] J. Cardy, U. C. Tauber Phys. Rev Lett. 1996 4780 4783

[21] Here the Hamiltonian which defines the evolution does not account for the constraint that A particle cannot be born on a site ocuupied by B particle. This constraint can be taken into account by replcing the term with , where Θ(x) is the haviside function and ϵ is a positive infintesimal number.

Cité par Sources :