Modeling Adaptive Behavior in Influenza Transmission
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 253-262.

Voir la notice de l'article provenant de la source EDP Sciences

Contact behavior plays an important role in influenza transmission. In the progression of influenza spread, human population reduces mobility to decrease infection risks. In this paper, a mathematical model is proposed to include adaptive mobility. It is shown that the mobility response does not affect the basic reproduction number that characterizes the invasion threshold, but reduces dramatically infection peaks, or removes the peaks. Numerical calculations indicate that the mobility response can provide a very good protection to susceptible individuals, and a combination of mobility response and treatment is an effective way to control influenza outbreak.
DOI : 10.1051/mmnp/20127315

W. Wang 1

1 Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing, 400715, P. R. China
@article{MMNP_2012_7_3_a14,
     author = {W. Wang},
     title = {Modeling {Adaptive} {Behavior} in {Influenza} {Transmission}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2012},
     doi = {10.1051/mmnp/20127315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127315/}
}
TY  - JOUR
AU  - W. Wang
TI  - Modeling Adaptive Behavior in Influenza Transmission
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 253
EP  - 262
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127315/
DO  - 10.1051/mmnp/20127315
LA  - en
ID  - MMNP_2012_7_3_a14
ER  - 
%0 Journal Article
%A W. Wang
%T Modeling Adaptive Behavior in Influenza Transmission
%J Mathematical modelling of natural phenomena
%D 2012
%P 253-262
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127315/
%R 10.1051/mmnp/20127315
%G en
%F MMNP_2012_7_3_a14
W. Wang. Modeling Adaptive Behavior in Influenza Transmission. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 253-262. doi : 10.1051/mmnp/20127315. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127315/

[1] M. Balinska, C. Rizzo. Behavioural responses to influenza pandemics : what do we know ? PLoS. Curr., (2009), p. RRN1037.

[2] V. Capasso, G. Serio Math. Biosci. 1978 43 61

[3] J. Cui, Y. Sun, H. Zhu J. Dynam. Differential Equations 2008 31 53

[4] W. R. Derrick, P. Van Den Driessche J. Math. Biol. 1993 495 512

[5] A. D’Onofrio, P. Manfredi J. Theor. Biol. 2009 473 478

[6] J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond Coupled contagion dynamics of fear and disease : mathematical and computational explorations PLoS One 2008

[7] S. Funk, E. Gilad, V. A. A. Jansen J. Theor. Biol. 2010 501 509

[8] D. Gao, S. Ruan Mathematical Biosciences 2011 110 115

[9] I. Z. Kiss, J. Cassell, M. Recker, P. L. Simon Math. Biosci. 2010 1 10

[10] J.P. LaSalle, S. Lefschetz. Stability by Lyapunov’s Direct Method. Academic Press, New York, 1961.

[11] W. M. Liu, H. W. Hethcote, S. A. Levin J. Math. Biol. 1987 359 380

[12] W. M. Liu, S. A. Levin, Y. Iwasa J. Math. Biol. 1986 187 204

[13] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, S. Merler J. Theor. Biol. 2009 31 40

[14] Z. Qiu, Z. Feng Bull. Math. Biol. 2010 1 33

[15] S. Ruan, W. Wang J. Differential Equations 2003 135 163

[16] S. Ruan, W. Wang, S. Levin Mathematical Biosciences and Engineering 2006 205 218

[17] L. Sattenspiel, D. A. Herring Bull. Math. Biol. 2003 1 26

[18] C. Sun, W. Yang, J. Arino, K. Khan Math. Biosci. 2011 87 95

[19] M. M. Tanaka, J. Kumm, M. W. Feldman Theor. Popul. Biol. 2002 111 119

[20] S. Tang, Y. Xiao, Y. Yang, Y. Zhou, J. Wu, Z. Ma PLoS One 2010 e10911

[21] P. Van Den Driessche, J. Watmough Math. Biosci. 2002 29 48

[22] W. Wang Mathematical Biosciences and Engineering 2006 267 279

[23] W. Wang, S. Ruan J. Theor. Biol. 2004 369 379

[24] D. Xiao, S. Ruan Math. Biosci. 2007 419 429

Cité par Sources :