Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 147-167.

Voir la notice de l'article provenant de la source EDP Sciences

We present a unified mathematical approach to epidemiological models with parametric heterogeneity, i.e., to the models that describe individuals in the population as having specific parameter (trait) values that vary from one individuals to another. This is a natural framework to model, e.g., heterogeneity in susceptibility or infectivity of individuals. We review, along with the necessary theory, the results obtained using the discussed approach. In particular, we formulate and analyze an SIR model with distributed susceptibility and infectivity, showing that the epidemiological models for closed populations are well suited to the suggested framework. A number of known results from the literature is derived, including the final epidemic size equation for an SIR model with distributed susceptibility. It is proved that the bottom up approach of the theory of heterogeneous populations with parametric heterogeneity allows to infer the population level description, which was previously used without a firm mechanistic basis; in particular, the power law transmission function is shown to be a consequence of the initial gamma distributed susceptibility and infectivity. We discuss how the general theory can be applied to the modeling goals to include the heterogeneous contact population structure and provide analysis of an SI model with heterogeneous contacts. We conclude with a number of open questions and promising directions, where the theory of heterogeneous populations can lead to important simplifications and generalizations.
DOI : 10.1051/mmnp/20127310

A.S. Novozhilov 1

1 Applied Mathematics–1, Moscow State University of Railway Engineering Obraztsova 9, bldg. 9, Moscow 127994, Russia
@article{MMNP_2012_7_3_a9,
     author = {A.S. Novozhilov},
     title = {Epidemiological {Models} {With} {Parametric} {Heterogeneity} : {Deterministic} {Theory} for {Closed} {Populations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {147--167},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2012},
     doi = {10.1051/mmnp/20127310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127310/}
}
TY  - JOUR
AU  - A.S. Novozhilov
TI  - Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 147
EP  - 167
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127310/
DO  - 10.1051/mmnp/20127310
LA  - en
ID  - MMNP_2012_7_3_a9
ER  - 
%0 Journal Article
%A A.S. Novozhilov
%T Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations
%J Mathematical modelling of natural phenomena
%D 2012
%P 147-167
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127310/
%R 10.1051/mmnp/20127310
%G en
%F MMNP_2012_7_3_a9
A.S. Novozhilov. Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 147-167. doi : 10.1051/mmnp/20127310. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127310/

[1] O. O. Aalen Statistical Methods in Medical Research 1994 227

[2] O. O. Aalen, Ø. Borgan, H. K. Gjessing. Survival and event history analysis : a process point of view. Springer Verlag, 2008.

[3] A. S. Ackleh Non-Linear Analysis 1998 729 745

[4] A. S. Ackleh, D. F. Marshall, H. E. Heatherly Journal of Applied Mathematics and Stochastic Analysis 2000 287 297

[5] A. S. Ackleh, D. F. Marshall, H. E. Heatherly, B. G. Fitzpatrick Mathematical Models and Methods in Applied Sciences 1999 1379 1391

[6] R. M. Anderson, R. M. C. May. Infectious diseases of humans : Dynamics and control. Oxford University Press, New York, 1991.

[7] H. Andersson and T. Britton. Stochastic epidemic models and their statistical analysis. Springer Verlag, 2000.

[8] V. Andreasen. The final size of an epidemic and its relation to the basic reproduction number. Bulletin of Mathematical Biology, (2011) in press.

[9] F. Ball Advances in Applied Probability 1985 1 22

[10] F. Ball, D. Clancy Advances in Applied Probability 1993 721 736

[11] S. Bansal, B. T. Grenfell, L. A. Meyers Journal of Royal Sosciety Interface 2007 879 891

[12] F. S. Berezovskaya, A. S. Novozhilov, G. P. Karev Mathematical Biosciences 2007 270 299

[13] B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet Journal of Mathematical Biology 2011 39 64

[14] R. D. Boylan Mathematical Biosciences 1991 133 137

[15] A. S. Bratus, A. S. Novozhilov, Platonov A. P. Dynamical systems and models in biology. Fizmatlit, 2010.

[16] F. A. B. Coutinho, E. Massad, L. F. Lopez, M. N. Burattini, C. J. Struchiner, R. S. Azevedo-Neto Mathematical and Computer Modelling 1999 97 115

[17] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, J. V. Ross, M. C. Vernon. Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 28 (2011).

[18] A. M. De Roos, L. Persson. Unstructured population models : Do population-level assumptions yield general theory ? In K. Cuddington and B. Beisner, editors, Ecological paradigms lost : Routes of theory change, pages 31–62. Academic Press, 2005.

[19] O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases : Model building, analysis and interpretation, John Wiley, 2000.

[20] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz Journal of Mathematical Biology 1990 365 382

[21] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz. The legacy of Kermack and McKendrick. In D. Mollison, editor, Epidemic models : Their structure and relation to data, 95–115. Cambridge University Press, 1995.

[22] M.A. Duffy, L. Sivars-Becker Ecology Letters 2007 44 53

[23] J. Dushoff Theoretical Population Biology 1999 325 335

[24] G. Dwyer, J. Dushoff, J. S. Elkinton, J. P. Burand, S. A. Levin. Variation in susceptibility : Lessons from an insect virus. In U. Diekmann, H. Metz, M. Sabelis, and K. Sigmund, editors, Adaptive dynamics of infectious diseases : In pursuit of virulence management, 74–84. Cambridge Univercity Press, 2002.

[25] G. Dwyer, J. Dushoff, J. S. Elkinton, S. A. Levin The American Naturalist 2000 105 120

[26] G. Dwyer, J. S. Elkinton, J. P. Buonaccorsi The American Naturalist 1997 685 707

[27] J. J. Gart Biometrics 1972 921 930

[28] A. N. Gorban Mathematical Modelling of Natural Phenomena 2007 1 45

[29] A. N. Gorban. Self-simplification in Darwin’s systems. In A. N. Gorban and D. Roose, editors, Coping with complexity : Model reduction and data analysis, pages 311–340. Springer Verlag, 2010.

[30] A. Hastings. Unstructured models in ecology : past, present, and future. In K. Cuddington and B. E. Beisner, editors, Ecological paradigms lost : Routes of theory change, pages 9–30. Academic Press, 2005.

[31] J. A. P. Heesterbeek. The law of mass-action in epidemiology : a historical perspective. In K. Cuddington and B. E. Beisner, editors, Ecological paradigms lost : Routes of theory change, pages 81–104. Academic Press, 2005.

[32] S. Hsu Schmitz. Effects of genetic heterogeneity on HIV transmission in homosexual populations. In C. Castillo-Chavez, editor, Mathematical approaches for emerging and reemerging infectious diseases : Models, methods, and theory, pages 245–260. IMA, 2002.

[33] J. M. Hyman, J. Li Journal of Mathematical Biology 2005 626 644

[34] G. P. Karev Doklady Mathematics 2000 141 144

[35] G. P. Karev Ecological Modelling 2003 23 37

[36] G. P. Karev Journal of Biological Systems 2005 83 104

[37] G. P. Karev Journal of Mathematical Biology 2010 107 129

[38] G. P. Karev Bulletin of Mathematical Biology 2010 1124 1142

[39] G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya Mathematical Medicine and Biology 2011 89 110

[40] G. P. Karev, A. S. Novozhilov, E. V. Koonin Biology Direct 2006 19

[41] G. Katriel. The size of epidemics in populations with heterogeneous susceptibility. Journal of Mathematical Biology, (2011), in press.

[42] M. J. Keeling, P. Rohani. Modeling infectious diseases in humans and animals. Princeton University Press, 2008.

[43] W. O. Kermack, A. G. Mckendrick Proceedings of the Royal Society of London. Series A 1927 700 721

[44] W. M. Liu, H. W. Hethcote, S. A. Levin Journal of Mathematical Biology 1987 359 380

[45] W. M. Liu, S. A. Levin, Y. Iwasa Journal of Mathematical Biology 1986 187 204

[46] R. M. May, R. M. Anderson Proceedings of the Royal Society of London. Series B : Biological Sciences 1988 565 607

[47] H. Mccallum, N. Barlow, J. Hone Trends in Ecology & Evolution 2001 295 300

[48] L.A. Meyers Bulletin of American Mathematical Society 2007 63 86

[49] M. Nikolaou, V. H. Tam Journal of Mathematical Biology 2006 154 182

[50] A. S. Novozhilov Journal of Computer and System Sciences International 2004 378 382

[51] A. S. Novozhilov Mathematical Biosciences 2008 177 185

[52] A. S. Novozhilov Dynamics of Continuous, Discrete and Impulsive Systems (Series A, Mathematical Analysis) 2009 136 140

[53] A. S. Novozhilov. On the stochastic SIR model with heterogeneous susceptibility. (2012), in preparation.

[54] A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin, G. P. Karev Biology Direct 2006 18

[55] P. Rodrigues, A. Margheri, C. Rebelo, M. G. M. Gomes Journal of Theoretical Biology 2009 280 290

[56] M. Roy, M. Pascual Ecological Complexity 2006 80 90

[57] G. Scalia-Tomba Journal of Applied Probability 1986 563 584

[58] N. C. Severo Mathematical Biosciences 1969 395 402

[59] P. D. Stroud, S. J. Sydoriak, J. M. Riese, J. P. Smith, S. M. Mniszewski, P. R. Romero Mathematical Biosciences 2006 301 318

[60] V. M. Veliov Journal of Mathematical Biology 2005 123 143

[61] E. B. Wilson, J. Worcester Proceedings of the National Academy of Sciences of the USA 1945 24 34

[62] E. B. Wilson, J. Worcester Proceedings of the National Academy of Sciences of the USA 1945 109 116

Cité par Sources :