Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_3_a7, author = {P.S. Mandal and M. Banerjee}, title = {Deterministic {Chaos} vs. {Stochastic} {Fluctuation} in an {Eco-epidemic} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {99--116}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2012}, doi = {10.1051/mmnp/20127308}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127308/} }
TY - JOUR AU - P.S. Mandal AU - M. Banerjee TI - Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model JO - Mathematical modelling of natural phenomena PY - 2012 SP - 99 EP - 116 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127308/ DO - 10.1051/mmnp/20127308 LA - en ID - MMNP_2012_7_3_a7 ER -
%0 Journal Article %A P.S. Mandal %A M. Banerjee %T Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model %J Mathematical modelling of natural phenomena %D 2012 %P 99-116 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127308/ %R 10.1051/mmnp/20127308 %G en %F MMNP_2012_7_3_a7
P.S. Mandal; M. Banerjee. Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 99-116. doi : 10.1051/mmnp/20127308. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127308/
[1] E. Allen. Modeling with Itô Stochastic Differential Equations. Springer, The Netherlands, 2007.
[2] L. J. S. Allen. An Introduction to Stochastic Processes with Applications to Biology. Pearson Eduction Inc., New Jercy, 2003.
[3] Math. Biosci. 1991 111 131
, ,[4] Nonlinearity 2004 1101 1116
, , ,[5] Stoch. Anal. Appl. 2008 274 297
, , ,[6] Math. Biosci. 1999 41 67
[7] J. Math. Biol. 1994 857 863
,[8] F. Brauer, C. Castillo-Chàvez. Mathematical Models in Population Biolgy and Epidemiology Springer-Verlag, New York, 2001.
[9] Math. Biosci. 2010 24 35
[10] Math. Biosci. 2009 109 116
,[11] Ecol. Model. 2001 103 112
,[12] Math. Biosci. 1998 179 198
,[13] Math. Biosci. 1990 143 155
[14] T. C. Gard. Introduction to Stochastic Differential Equations. Marcel Decker, New York, 1987.
[15] C. W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, New York, 1983.
[16] J. Comp. Phy. 1976 403 434
[17] J. Chem. Phy. 2000 297 306
[18] N. S. Goel, N. Richter-Dyn. Stochastic Models in Biology. Academic Press, New York, 1974.
[19] J. Math. Biol. 2009 1 36
,[20] J. Math. Biol. 1989 609 631
,[21] M2AS 2006 911 929
,[22] SIAM Rev. 2001 525 546
[23] Proc. Roy. Soc. Lond. A. 1927 700 721
,[24] P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, Berlin, 1999.
[25] M. Kot. Elements of Mathematical Biology. Cambridge University Press, Cambridge, 2001.
[26] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, Berlin, 1997.
[27] A. J. Lotka. Elements of physical biology. Williams Wilkins Co., Baltimore, 1925.
[28] J. Marsden, M. McCracken. The Hopf Bifurcation and its Applications. Springer, New York, 1976.
[29] H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology : Theory, Models and Simulations. Chapman Hall, London, 2008.
[30] J. D. Murray. Mathematical Biology. Springer, New York, 1993.
[31] R. J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley Sons, New York, 1980.
[32] Math. Biosci. Eng. 2009 857 873
, ,[33] Appl. Math. Comput. 2008 392 401
, , ,[34] Rocky Mountain Journal of Mathematics. 1994 381 402
[35] E. Venturino. Epidemics in predator-prey models : disease in the prey, In ‘Mathematical Population Dynamics, Analysis of Heterogeneity’. 1, O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds), Wnertz Publisher Ltd, Canada, 381–393, 1995.
[36] V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. 2. Mem. R. Accad. Naz. dei Lincei. Ser. VI, 1926.
Cité par Sources :