On the Dynamics of a Two-Strain Influenza Model with Isolation
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 49-61.

Voir la notice de l'article provenant de la source EDP Sciences

Influenza has been responsible for human suffering and economic burden worldwide. Isolation is one of the most effective means to control the disease spread. In this work, we incorporate isolation into a two-strain model of influenza. We find that whether strains of influenza die out or coexist, or only one of them persists, it depends on the basic reproductive number of each influenza strain, cross-immunity between strains, and isolation rate. We propose criteria that may be useful for controlling influenza. Furthermore, we investigate how effective isolation is by considering the host’s mean age at infection and the invasion rate of a novel strain. Our results suggest that isolation may help to extend the host’s mean age at infection and reduce the invasion rate of a new strain. When there is a delay in isolation, we show that it may lead to more serious outbreaks as compared to no delay.
DOI : 10.1051/mmnp/20127305

F. Chamchod 1, 2 ; N.F. Britton 2

1 Department of Mathematics, University of Miami, Coral Gables, Miami, FL 33124-4250, USA
2 Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
@article{MMNP_2012_7_3_a4,
     author = {F. Chamchod and N.F. Britton},
     title = {On the {Dynamics} of a {Two-Strain} {Influenza} {Model} with {Isolation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2012},
     doi = {10.1051/mmnp/20127305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127305/}
}
TY  - JOUR
AU  - F. Chamchod
AU  - N.F. Britton
TI  - On the Dynamics of a Two-Strain Influenza Model with Isolation
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 49
EP  - 61
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127305/
DO  - 10.1051/mmnp/20127305
LA  - en
ID  - MMNP_2012_7_3_a4
ER  - 
%0 Journal Article
%A F. Chamchod
%A N.F. Britton
%T On the Dynamics of a Two-Strain Influenza Model with Isolation
%J Mathematical modelling of natural phenomena
%D 2012
%P 49-61
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127305/
%R 10.1051/mmnp/20127305
%G en
%F MMNP_2012_7_3_a4
F. Chamchod; N.F. Britton. On the Dynamics of a Two-Strain Influenza Model with Isolation. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 49-61. doi : 10.1051/mmnp/20127305. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127305/

[1] R. Cattaneo, A. Schmid, D. Eschle, K. Baczko, V. T. Meulen, M. A. Billeter Cell 1988 255 265

[2] W. F. Carman, A. R. Zannetti, P. Karayiannis, J. Waters, G. Manzillo, E. Tanzi, A. J. Zuckermann, H. C. Thomas Lancet 1990 325 329

[3] S. Sato, K. Suzuki, Y. Akahane, K. Akiyama, K. Yunomura, F. Tsuda, T. Tanaka, H. Okamoto, Y. Miyakawa, M. Mayumi Ann. Internal Medicine 1995 241 248

[4] W. N. Chen, C. J. Oon J. Clin. Microbiol. 2000 2793 2794

[5] J. J. Eron, P. L. Vernazza, D. M. Johnston, F. Seillier-Moiseiwitsch, T. M. Alcorn, S. A. Fiscus, M. S. Cohen AIDS 1998 181 189

[6] G. D. Ebel, A. P. Dupuis, K. Ngo, D. Nicholas, E. Kauffman, S. A. Jones, D. Young, J. Maffei, P. Y. Shi, K. Bernard, L. D. Kramer Emerg. Infec. Dis. 2000 650 653

[7] P. K. Cassiday, G. N. Sanden, K. Heuvelman, F. R. Mooi, K. M. Bisgard, T. Popovic J. Infect. Dis. 2000 1402 1408

[8] C. Weber, C. Boursaux-Eude, G. Coralie, V. Caro, N. Guiso J. Clin. Microbiol. 2001 4396 4403

[9] S. Gupta, K. Trenholme, R. M. Anderson, K. P. Day Science 1994 961 963

[10] P. Palese, J. F. Young Science 1982 1486 1474

[11] R. G. Webster Emerg. Infec. Dis. 1998 436 441

[12] J. Davies, E. Grilli, A. Smith. Influenza A : infection and reinfection. J. Hyg.(Cambridge) 92, 125-127.

[13] H. Larson, D. Tyrrell, C. Bowker, C. Potter, G. Schild. Immunity to challenge in volunteers vaccinated with an inactivated current or earlier strain of influenza A(H3N2). J. Hyg. (Cambridge) 80, 243-248.

[14] A. L. Frank, L. H. Taber, J. M. Wells J. Infect. Dis. 1983 120 124

[15] T. Sonoguchi, H. Naito, M. Hara, Y. Takeuchi, H. Fukumi J. Infect. Dis. 1985 81 88

[16] C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin, W. M. Liu J. Math. Biol. 1989 233 258

[17] S. Gupta, M. C. J. Maiden, I. M. Feavers, S. Nee, R. M. May, R. M. Anderson Nat. Med. 1996 437 442

[18] V. Andreasen, J. Lin, S. A. Levin J. Math. Biol. 1997 825 842

[19] S. Gupta, N. Ferguson, R. M. Anderson Science 1998 912 915

[20] J. Lin, V. Andreason, S. A. Levin Math. Biosci. 1999 33 51

[21] J. R. Gog, J. Swinton J. Math. Biol. 2002 169 184

[22] J. R. Gog, B. T. Grenfell Proc. Natl. Acad. Sci. USA 2002 17209 17214

[23] M. Kamo, A. Sasaki Physica D 2002 228 241

[24] J. Lin, V. Andreasen, R. Casagrandi, S. A. Levin J. Theor. Biol. 2003 437 445

[25] V. Andreasen, J. Lin, S. A. Levin J. Math. Biol. 1997 825 842

[26] M. F. Boni, J. R. Gog, V. Andreasen, F. B. Christiansen Theor. Popul. Biol. 2004 179 191

[27] O. Restif, B. T. Grenfell Proc. R. Soc. B 2006 409 416

[28] B. Adams, A. Sasaki Math. Biosci. 2007 680 699

[29] P. Minayev, N. Ferguson J. R. Soc. Interface. 2009 509 518

[30] C. Pease Theor. Popul. Biol. 1987 422 452

[31] R. Casagrandi, L. Bolzoni, S. A. Levin, V. Andreasen Math. Biosci. 2006 152 169

[32] M. Nuno, Z. Feng, M. Martcheva, C. Castillo-Chavez SIAM J. Appl. Math. 2005 964 982

[33] M. Nuno, G. Chowell, X. Wang, C. Castillo-Chavez Theor. Popul. Biol. 2007 20 29

[34] M. J. Keeling, P. Rohani. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, New Jersey, 2008.

[35] L. Edelstein-Keshet. Mathematical Models in Biology. Random House, New York, 1986

Cité par Sources :