KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 131-145.

Voir la notice de l'article provenant de la source EDP Sciences

The matrix KdV equation with a negative dispersion term is considered in the right upper quarter–plane. The evolution law is derived for the Weyl function of a corresponding auxiliary linear system. Using the low energy asymptotics of the Weyl functions, the unboundedness of solutions is obtained for some classes of the initial–boundary conditions.
DOI : 10.1051/mmnp/20127211

A. Sakhnovich 1

1 Department of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria
@article{MMNP_2012_7_2_a10,
     author = {A. Sakhnovich},
     title = {KdV {Equation} in the {Quarter{\textendash}Plane:} {Evolution} of the {Weyl} {Functions} and {Unbounded} {Solutions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/}
}
TY  - JOUR
AU  - A. Sakhnovich
TI  - KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 131
EP  - 145
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/
DO  - 10.1051/mmnp/20127211
LA  - en
ID  - MMNP_2012_7_2_a10
ER  - 
%0 Journal Article
%A A. Sakhnovich
%T KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions
%J Mathematical modelling of natural phenomena
%D 2012
%P 131-145
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/
%R 10.1051/mmnp/20127211
%G en
%F MMNP_2012_7_2_a10
A. Sakhnovich. KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 131-145. doi : 10.1051/mmnp/20127211. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/

[1] J.L. Bona, A.S. Fokas Nonlinearity 2008 T195 T203

[2] J.L. Bona, W.G. Pritchard, L.R. Scott Philos. Trans. R. Soc. Lond., A 458 510

[3] J. Bona, R. Winther SIAM J. Math. Anal. 1983 1056 1106

[4] R. Carroll, Q. Bu Appl. Anal. 1991 33 51

[5] C.K. Chu, L.W. Xiang, Y. Baransky Commun. Pure Appl. Math. 1983 495 504

[6] S. Clark, F. Gesztesy Proc. Lond. Math. Soc., III. Ser. 2001 701 724

[7] S. Clark, F. Gesztesy, M. Zinchenko Oper. Matrices 2007 535 592

[8] A.S. Fokas Comm. Math. Phys. 2002 1 39

[9] A.S. Fokas. A unified approach to boundary value problems. CBMS-NSF Regional Conference Ser. in Appl. Math. vol. 78. SIAM, Philadelphia, 2008.

[10] A.S. Fokas, J. Lenells Nonlinearity 2010 937 976

[11] G. Freiling, V. Yurko. Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Huntington, N.Y., 2001.

[12] F. Gesztesy, B. Simon Commun. Math. Phys. 2000 273 287

[13] F. Gesztesy, B. Simon Ann. of Math. (2) 2000 593 643

[14] I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich Integr. Equ. Oper. Theory 1998 338 377

[15] M. Kac, P. Van Moerbeke Proc. Natl. Acad. Sci. USA 1975 2879 2880

[16] D.J. Kaup, H. Steudel Contemp. Math. 2003 33 48

[17] A. Kostenko, A. Sakhnovich, G. Teschl. Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2011, Art. ID rnr065, 49pp.

[18] P.C. Sabatier J. Math. Phys. 2000 414 436

[19] P.C. Sabatier J. Math. Phys. 2003 3216 3225

[20] P.C. Sabatier Inverse Probl. 2006 209 228

[21] A.L. Sakhnovich Inverse Probl. 2002 331 348

[22] A.L. Sakhnovich Inverse Probl. 2005 703 716

[23] A.L. Sakhnovich J. Differ. Equations 2012 3658 3667

[24] A.L. Sakhnovich Nonlinear Analysis 2012 964 974

[25] L.A. Sakhnovich. Nonlinear equations and inverse problems on the semi-axis (Russian). Preprint 87.30. Mathematical Institute, Kiev, 1987.

[26] L.A. Sakhnovich Ukrain. Math. J. 1988 459 461

[27] L.A. Sakhnovich. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory Adv. Appl. Ser. vol. 107. Birkhäuser, Basel, 1999.

[28] B.A. Ton J. Differ. Equations 1977 288 309

[29] P.A. Treharne, A.S. Fokas J. Nonlinear Sci. 2008 191 217

Cité par Sources :