Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_2_a10, author = {A. Sakhnovich}, title = {KdV {Equation} in the {Quarter{\textendash}Plane:} {Evolution} of the {Weyl} {Functions} and {Unbounded} {Solutions}}, journal = {Mathematical modelling of natural phenomena}, pages = {131--145}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2012}, doi = {10.1051/mmnp/20127211}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/} }
TY - JOUR AU - A. Sakhnovich TI - KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions JO - Mathematical modelling of natural phenomena PY - 2012 SP - 131 EP - 145 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/ DO - 10.1051/mmnp/20127211 LA - en ID - MMNP_2012_7_2_a10 ER -
%0 Journal Article %A A. Sakhnovich %T KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions %J Mathematical modelling of natural phenomena %D 2012 %P 131-145 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/ %R 10.1051/mmnp/20127211 %G en %F MMNP_2012_7_2_a10
A. Sakhnovich. KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 131-145. doi : 10.1051/mmnp/20127211. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127211/
[1] Nonlinearity 2008 T195 T203
,[2] Philos. Trans. R. Soc. Lond., A 458 510
, ,[3] SIAM J. Math. Anal. 1983 1056 1106
,[4] Appl. Anal. 1991 33 51
,[5] Commun. Pure Appl. Math. 1983 495 504
, ,[6] Proc. Lond. Math. Soc., III. Ser. 2001 701 724
,[7] Oper. Matrices 2007 535 592
, ,[8] Comm. Math. Phys. 2002 1 39
[9] A.S. Fokas. A unified approach to boundary value problems. CBMS-NSF Regional Conference Ser. in Appl. Math. vol. 78. SIAM, Philadelphia, 2008.
[10] Nonlinearity 2010 937 976
,[11] G. Freiling, V. Yurko. Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Huntington, N.Y., 2001.
[12] Commun. Math. Phys. 2000 273 287
,[13] Ann. of Math. (2) 2000 593 643
,[14] Integr. Equ. Oper. Theory 1998 338 377
, ,[15] Proc. Natl. Acad. Sci. USA 1975 2879 2880
,[16] Contemp. Math. 2003 33 48
,[17] A. Kostenko, A. Sakhnovich, G. Teschl. Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2011, Art. ID rnr065, 49pp.
[18] J. Math. Phys. 2000 414 436
[19] J. Math. Phys. 2003 3216 3225
[20] Inverse Probl. 2006 209 228
[21] Inverse Probl. 2002 331 348
[22] Inverse Probl. 2005 703 716
[23] J. Differ. Equations 2012 3658 3667
[24] Nonlinear Analysis 2012 964 974
[25] L.A. Sakhnovich. Nonlinear equations and inverse problems on the semi-axis (Russian). Preprint 87.30. Mathematical Institute, Kiev, 1987.
[26] Ukrain. Math. J. 1988 459 461
[27] L.A. Sakhnovich. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory Adv. Appl. Ser. vol. 107. Birkhäuser, Basel, 1999.
[28] J. Differ. Equations 1977 288 309
[29] J. Nonlinear Sci. 2008 191 217
,Cité par Sources :