On Numerical Solution of the Gardner–Ostrovsky Equation
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 113-130.

Voir la notice de l'article provenant de la source EDP Sciences

A simple explicit numerical scheme is proposed for the solution of the Gardner–Ostrovsky equation (ut + cux + α uux + α1u2ux + βuxxx)x = γu which is also known as the extended rotation-modified Korteweg–de Vries (KdV) equation. This equation is used for the description of internal oceanic waves affected by Earth’ rotation. Particular versions of this equation with zero some of coefficients, α, α1, β, or γ are also known in numerous applications. The proposed numerical scheme is a further development of the well-known finite-difference scheme earlier used for the solution of the KdV equation. The scheme is of the second order accuracy both on temporal and spatial variables. The stability analysis of the scheme is presented for infinitesimal perturbations. The conditions for the calculations with the appropriate accuracy have been found. Examples of calculations with the periodic boundary conditions are presented to illustrate the robustness of the proposed scheme.
DOI : 10.1051/mmnp/20127210

M. A. Obregon 1 ; Y. A. Stepanyants 2

1 E.T.S. Ingeniería Industrial, University of Malaga, Dr Ortiz Ramos s/n, 29071, Malaga, Spain
2 Department of Mathematics and Computing, Faculty of Sciences, University of Southern Queensland, Toowoomba, Australia
@article{MMNP_2012_7_2_a9,
     author = {M. A. Obregon and Y. A. Stepanyants},
     title = {On {Numerical} {Solution} of the {Gardner{\textendash}Ostrovsky} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {113--130},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127210/}
}
TY  - JOUR
AU  - M. A. Obregon
AU  - Y. A. Stepanyants
TI  - On Numerical Solution of the Gardner–Ostrovsky Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 113
EP  - 130
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127210/
DO  - 10.1051/mmnp/20127210
LA  - en
ID  - MMNP_2012_7_2_a9
ER  - 
%0 Journal Article
%A M. A. Obregon
%A Y. A. Stepanyants
%T On Numerical Solution of the Gardner–Ostrovsky Equation
%J Mathematical modelling of natural phenomena
%D 2012
%P 113-130
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127210/
%R 10.1051/mmnp/20127210
%G en
%F MMNP_2012_7_2_a9
M. A. Obregon; Y. A. Stepanyants. On Numerical Solution of the Gardner–Ostrovsky Equation. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 113-130. doi : 10.1051/mmnp/20127210. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127210/

[1] M.J. Ablowitz, H. Segur. Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, 1981.

[2] J. Apel, L.A. Ostrovsky, Y.A. Stepanyants, J.F. Lynch J. Acoust. Soc. Am. 2007 695 722

[3] Yu. Berezin. Modelling Nonlinear Wave Processes. VNU Science Press, 1987.

[4] M. Dehghan, F. Fakhar-Izadi Math. Comp. Modelling 2011 1865 1877

[5] V.M. Galkin, Yu.A. Stepanyants J. Appl. Maths. Mechs. 1991 939 943

[6] O.A. Gilman, R. Grimshaw, Yu.A. Stepanyants Stud. Appl. Math. 1995 115 126

[7] O.A. Gilman, R. Grimshaw, Yu.A. Stepanyants Dynamics. Atmos. and Oceans 1996 403 411

[8] R. Grimshaw, J.-M. He, L.A. Ostrovsky Stud. Appl. Math. 1998 197 210

[9] R. Grimshaw, L.A. Ostrovsky, V.I. Shrira, Yu.A. Stepanyants Surveys in Geophys. 1998 289 338

[10] R. Grimshaw, K. Helfrich Stud. Appl. Math. 2008 71 88

[11] P. Holloway, E. Pelinovsky, T. Talipova J. Geophys. Res. 1999 333 350

[12] A.I. Leonov Ann. New York Acad. Sci. 1981 150 159

[13] M.A. Obregon, Yu.A. Stepanyants Phys. Lett. A 1998 323

[14] L.A. Ostrovsky Oceanology 1978 119 125

[15] L.A. Ostrovsky, Yu.A. Stepanyants. Nonlinear surface and internal waves in rotating fluids. In : “Nonlinear Waves 3”, Proc. 1989 Gorky School on Nonlinear Waves, (1990), 106–128. Eds. A.V. Gaponov-Grekhov, M.I. Rabinovich and J. Engelbrecht, Springer-Verlag, Berlin–Heidelberg.

[16] L.A. Ostrovsky, Yu.A. Stepanyants. Internal solitons in laboratory experiments : Comparison with theoretical models, Chaos, 15, (2005) 037111, 28 p.

[17] D.E. Pelinovsky, Yu.A. Stepanyants SIAM J. Numerical Analysis 2004 1110 1127

[18] V.I. Petviashvili, O.V. Pokhotelov. Solitary Waves in Plasmas and in the Atmosphere. Gordon and Breach, Philadelphia, 1992.

[19] Yu.A. Stepanyants Chaos, Solitons and Fractals 2006 193 204

[20] Yu.A. Stepanyants, I.K. Ten, H. Tomita. Lump solutions of 2D generalised Gardner equation. In : “Nonlinear Science and Complexity”, Proc. of the Conference, Beijing, China, 7–12 August 2006, 264–271. Eds. A.C.J. Luo, L. Dai and H.R. Hamidzadeh, World Scientific, 2006.

[21] V.O. Vakhnenko J. Math. Phys. 1999 2011 2020

[22] G.B. Whitham. Linear and Nonlinear Waves. John Wiley Sons, 1974.

[23] T. Yaguchi, T. Matsuo, M. Sugihara J. Comp. Appl. Maths. 2010 1036 1048

Cité par Sources :