Solitons and Gibbs Measures for Nonlinear Schrödinger Equations
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 95-112.

Voir la notice de l'article provenant de la source EDP Sciences

We review some recent results concerning Gibbs measures for nonlinear Schrödinger equations (NLS), with implications for the theory of the NLS, including stability and typicality of solitary wave structures. In particular, we discuss the Gibbs measures of the discrete NLS in three dimensions, where there is a striking phase transition to soliton-like behavior.
DOI : 10.1051/mmnp/20127209

K. Kirkpatrick 1

1 University of Illinois at Urbana-Champaign, Department of Mathematics, Urbana, IL, 61801, USA
@article{MMNP_2012_7_2_a8,
     author = {K. Kirkpatrick},
     title = {Solitons and {Gibbs} {Measures} for {Nonlinear} {Schr\"odinger} {Equations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/}
}
TY  - JOUR
AU  - K. Kirkpatrick
TI  - Solitons and Gibbs Measures for Nonlinear Schrödinger Equations
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 95
EP  - 112
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/
DO  - 10.1051/mmnp/20127209
LA  - en
ID  - MMNP_2012_7_2_a8
ER  - 
%0 Journal Article
%A K. Kirkpatrick
%T Solitons and Gibbs Measures for Nonlinear Schrödinger Equations
%J Mathematical modelling of natural phenomena
%D 2012
%P 95-112
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/
%R 10.1051/mmnp/20127209
%G en
%F MMNP_2012_7_2_a8
K. Kirkpatrick. Solitons and Gibbs Measures for Nonlinear Schrödinger Equations. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 95-112. doi : 10.1051/mmnp/20127209. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/

[1] M. Ablowitz, B. Prinar, A. Trubatch. Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, No. 302, Cambridge University Press, 2004.

[2] Yu.V. Bludov, V.V. Konotop, N. Akhmediev Phys. Rev. A 2009 033610

[3] J.L. Bona, Y.A. Li J. Math. Pures Appl. 1997 377 430

[4] J. Bourgain Comm. Math. Phys. 1994 1 26

[5] J. Bourgain Comm. Math. Phys. 2000 605 620

[6] J. Bourgain Comm. Math. Phys. 1996 421 445

[7] J. Bourgain. On nonlinear Schrödinger equations, Les relations entre les mathématiques et la physique théorique, 11-21, Inst. Hautes Études Sci., Bures-sur-Yvette, 1998.

[8] D. Brydges, G. Slade Comm. Math. Phys. 1996 485 504

[9] R. Burioni, D. Cassi, P. Sodano, A. Trombettoni, A. Vezzani Phys. D 2006 71 76

[10] Y. Burlakov. The phase space of the cubic Schroedinger equation : A numerical study. Thesis (Ph.D.)–University of California, Berkeley. Preprint 740 (1998).

[11] N. Burq, N. Tzvetkov Invent. Math. 2008 449 475

[12] N. Burq, N. Tzvetkov Invent. Math. 2008 477 496

[13] L. Caffarelli, S. Salsa, L. Silvestre Invent. Math. 2008 425 461

[14] T. Cazenave. Semilinear Schrödinger equations. Courant Lecture Notes, No. 10, American Mathematical Society and Courant Institute of Mathematical Sciences, New York, 2003.

[15] T. Cazenave, P.-L. Lions Comm. Math. Phys. 1982 549 561

[16] S. Chatterjee, K. Kirkpatrick. Probabilistic methods for discrete nonlinear Schrödinger equations, to appear in Comm. Pure Appl. Math.

[17] M. Christ, J. Colliander, T. Tao Amer. J. Math. 2003 1235 1293

[18] J. Colliander, T. Oh. Almost sure well-posedness of the periodic cubic nonlinear Schrödinger equation below L2, arXiv :0904.2820.

[19] R. Cont, P. Tankov. Financial modelling with jump processes. Chapman Hall/CRC Financial Mathematics Series, Boca Raton, FL, 2004.

[20] L. Erdős, B. Schlein, H.-T. Yau Invent. Math. 2007 515 614

[21] L. Erdős, B. Schlein, H.-T. Yau 2010 291 370

[22] P. Felmer, A. Quaas, J. Tan. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Preprint : http://www.capde.cl/publication/abstract/frac-FQTreview1.pdf

[23] S. Flach, K. Kladko, R.S. Mackay Phys. Rev. Lett. 1997 1207 1210

[24] Yu. Gaididei, S. Mingaleev, P. Christiansen, K. Rasmussen Phys. Rev. E 1997 6141 6150

[25] Yu. Gaididei, S. Mingaleev, P. Christiansen, K. Rasmussen Phys. Lett. A 1996 152 156

[26] J. Ginibre, G. Velo J. Funct. Anal. 1979 1 32

[27] Z. Guo, Y. Wang. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrdinger and wave equation. arXiv :1007.4299.

[28] J. Holmer, R. Platte, S. Roudenko Nonlinearity 2010 977 1030

[29] R. Jordan, C. Josserand Nonlinear waves : computation and theory (Athens, GA,1999). Math. Comput. Simulation 2001 433 447

[30] R. Jordan, B. Turkington. Statistical equilibrium theories for the nonlinear Schr"odinger equation, Advances in wave interaction and turbulence (South Hadley, MA, 2000), 27–39, Contemp. Math. 283, Amer. Math. Soc., Providence, RI, 2001.

[31] T. Kato t Ann. Inst. H. Poincaré Phys. Theor. 1987 113 129

[32] C. Kenig, Y. Martel, L Robbiano. Local well-posedness and blow up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Preprint arXiv :1006.0122

[33] P. Kevrekidis, D. Pelinovsky, A. Stefanov SIAM J. Math. Anal. 2009 2010 2030

[34] K. Kirkpatrick, E. Lenzmann, G. Staffilani. On the continuum limit for discrete NLS with long-range lattice interactions, arXiv :1108.6136v1.

[35] K. Kirkpatrick, B. Schlein, G. Staffilani Amer. J. Math. 2011 91 130

[36] A. Komech, E. Kopylova, M. Kunze Appl. Anal. 2006 1487 1508

[37] O. A. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, No. 49. Springer-Verlag New York, 1985.

[38] N. Laskin. Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp.

[39] J. Lebowitz, H. Rose, E. Speer J. Stat. Phys. 1988 657 687

[40] R. S. Mackay, S. Aubry Nonlinearity 1994 1623 1643

[41] H. P. Mckean, K. L. Vaninsky Comm. Math. Phys. 1994 615 630

[42] H. P. Mckean, K. L. Vaninsky Comm. Pure Appl. Math. 1997 489 562

[43] H. P. Mckean, K. L. Vaninsky Comm. Pure Appl. Math. 1997 593 622

[44] B. Malomed, M. I. Weinstein Phys. Lett. A 1996 91 96

[45] M. Maris Nonlinear Anal. 2002 1073 1085

[46] S. Mingaleev, P. Christiansen, Yu. Gaididei, M. Johannson, K. Rasmussen J. Biol. Phys. 1999 41 63

[47] L. Molinet Math. Res. Lett. 2009 111 120

[48] A. Nahmod, T. Oh, L. Rey-Bellet, G. Staffilani. Invariant weighted Wiener measures adn almost sure global well-posedness for the periodic derivative NLS. arXiv :1007.1502.

[49] T. Oh, C. Sulem. On the one-dimensional cubic nonlinear Schrodinger equation below L2, arXiv :1007.2073.

[50] D. Pelinovsky, P. Kevrekidis J. Phys. A 2008 185 206

[51] D. Pelinovsky, A. Sakovich Physica D 2011 265 281

[52] D. Pelinovsky, A. Stefanov. On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension. J. Math. Phys. 49, (2008), no. 11,113501, 17 pp.

[53] B. Rider Comm. Pure Appl. Math. 2002 1231 1248

[54] B. Rider J. Stat. Phys. 2003 575 594

[55] B. Rumpf Phys. Rev. E 2004 016618

[56] S. Samko, A. Kilbas, O. Marichev. Fractional Integrals and Derivatives : Theory and Applications. Gordon and Breach Science Publishers, Amsterdam, 1993.

[57] Y. Sire, E. Valdinoci J. Funct. Anal. 2009 1842 1864

[58] A. Stefanov, P. Kevrekidis Nonlinearity 2005 1841 1857

[59] C. Sulem, P.L. Sulem. The nonlinear Schrödinger equation : self-focusing and wave collapse. Springer, 1999.

[60] N. Tzvetkov Ann. Inst. Fourier (Grenoble) 2008 2543 2604

[61] M. I. Weinstein Nonlinearity 1999 673 691

[62] V. E. Zakharov J. Appl. Mech. Tech. Phys. 1968 190 198

Cité par Sources :