Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_2_a8, author = {K. Kirkpatrick}, title = {Solitons and {Gibbs} {Measures} for {Nonlinear} {Schr\"odinger} {Equations}}, journal = {Mathematical modelling of natural phenomena}, pages = {95--112}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2012}, doi = {10.1051/mmnp/20127209}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/} }
TY - JOUR AU - K. Kirkpatrick TI - Solitons and Gibbs Measures for Nonlinear Schrödinger Equations JO - Mathematical modelling of natural phenomena PY - 2012 SP - 95 EP - 112 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/ DO - 10.1051/mmnp/20127209 LA - en ID - MMNP_2012_7_2_a8 ER -
%0 Journal Article %A K. Kirkpatrick %T Solitons and Gibbs Measures for Nonlinear Schrödinger Equations %J Mathematical modelling of natural phenomena %D 2012 %P 95-112 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/ %R 10.1051/mmnp/20127209 %G en %F MMNP_2012_7_2_a8
K. Kirkpatrick. Solitons and Gibbs Measures for Nonlinear Schrödinger Equations. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 95-112. doi : 10.1051/mmnp/20127209. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127209/
[1] M. Ablowitz, B. Prinar, A. Trubatch. Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, No. 302, Cambridge University Press, 2004.
[2] Phys. Rev. A 2009 033610
, ,[3] J. Math. Pures Appl. 1997 377 430
,[4] Comm. Math. Phys. 1994 1 26
[5] Comm. Math. Phys. 2000 605 620
[6] Comm. Math. Phys. 1996 421 445
[7] J. Bourgain. On nonlinear Schrödinger equations, Les relations entre les mathématiques et la physique théorique, 11-21, Inst. Hautes Études Sci., Bures-sur-Yvette, 1998.
[8] Comm. Math. Phys. 1996 485 504
,[9] Phys. D 2006 71 76
, , , ,[10] Y. Burlakov. The phase space of the cubic Schroedinger equation : A numerical study. Thesis (Ph.D.)–University of California, Berkeley. Preprint 740 (1998).
[11] Invent. Math. 2008 449 475
,[12] Invent. Math. 2008 477 496
,[13] Invent. Math. 2008 425 461
, ,[14] T. Cazenave. Semilinear Schrödinger equations. Courant Lecture Notes, No. 10, American Mathematical Society and Courant Institute of Mathematical Sciences, New York, 2003.
[15] Comm. Math. Phys. 1982 549 561
,[16] S. Chatterjee, K. Kirkpatrick. Probabilistic methods for discrete nonlinear Schrödinger equations, to appear in Comm. Pure Appl. Math.
[17] Amer. J. Math. 2003 1235 1293
, ,[18] J. Colliander, T. Oh. Almost sure well-posedness of the periodic cubic nonlinear Schrödinger equation below L2, arXiv :0904.2820.
[19] R. Cont, P. Tankov. Financial modelling with jump processes. Chapman Hall/CRC Financial Mathematics Series, Boca Raton, FL, 2004.
[20] Invent. Math. 2007 515 614
, ,[21]
, , 2010 291 370[22] P. Felmer, A. Quaas, J. Tan. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Preprint : http://www.capde.cl/publication/abstract/frac-FQTreview1.pdf
[23] Phys. Rev. Lett. 1997 1207 1210
, ,[24] Phys. Rev. E 1997 6141 6150
, , ,[25] Phys. Lett. A 1996 152 156
, , ,[26] J. Funct. Anal. 1979 1 32
,[27] Z. Guo, Y. Wang. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrdinger and wave equation. arXiv :1007.4299.
[28] Nonlinearity 2010 977 1030
, ,[29] Nonlinear waves : computation and theory (Athens, GA,1999). Math. Comput. Simulation 2001 433 447
,[30] R. Jordan, B. Turkington. Statistical equilibrium theories for the nonlinear Schr"odinger equation, Advances in wave interaction and turbulence (South Hadley, MA, 2000), 27–39, Contemp. Math. 283, Amer. Math. Soc., Providence, RI, 2001.
[31] t Ann. Inst. H. Poincaré Phys. Theor. 1987 113 129
[32] C. Kenig, Y. Martel, L Robbiano. Local well-posedness and blow up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Preprint arXiv :1006.0122
[33] SIAM J. Math. Anal. 2009 2010 2030
, ,[34] K. Kirkpatrick, E. Lenzmann, G. Staffilani. On the continuum limit for discrete NLS with long-range lattice interactions, arXiv :1108.6136v1.
[35] Amer. J. Math. 2011 91 130
, ,[36] Appl. Anal. 2006 1487 1508
, ,[37] O. A. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, No. 49. Springer-Verlag New York, 1985.
[38] N. Laskin. Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp.
[39] J. Stat. Phys. 1988 657 687
, ,[40] Nonlinearity 1994 1623 1643
,[41] Comm. Math. Phys. 1994 615 630
,[42] Comm. Pure Appl. Math. 1997 489 562
,[43] Comm. Pure Appl. Math. 1997 593 622
,[44] Phys. Lett. A 1996 91 96
,[45] Nonlinear Anal. 2002 1073 1085
[46] J. Biol. Phys. 1999 41 63
, , , ,[47] Math. Res. Lett. 2009 111 120
[48] A. Nahmod, T. Oh, L. Rey-Bellet, G. Staffilani. Invariant weighted Wiener measures adn almost sure global well-posedness for the periodic derivative NLS. arXiv :1007.1502.
[49] T. Oh, C. Sulem. On the one-dimensional cubic nonlinear Schrodinger equation below L2, arXiv :1007.2073.
[50] J. Phys. A 2008 185 206
,[51] Physica D 2011 265 281
,[52] D. Pelinovsky, A. Stefanov. On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension. J. Math. Phys. 49, (2008), no. 11,113501, 17 pp.
[53] Comm. Pure Appl. Math. 2002 1231 1248
[54] J. Stat. Phys. 2003 575 594
[55] Phys. Rev. E 2004 016618
[56] S. Samko, A. Kilbas, O. Marichev. Fractional Integrals and Derivatives : Theory and Applications. Gordon and Breach Science Publishers, Amsterdam, 1993.
[57] J. Funct. Anal. 2009 1842 1864
,[58] Nonlinearity 2005 1841 1857
,[59] C. Sulem, P.L. Sulem. The nonlinear Schrödinger equation : self-focusing and wave collapse. Springer, 1999.
[60] Ann. Inst. Fourier (Grenoble) 2008 2543 2604
[61] Nonlinearity 1999 673 691
[62] J. Appl. Mech. Tech. Phys. 1968 190 198
Cité par Sources :