Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 77-82.

Voir la notice de l'article provenant de la source EDP Sciences

Two-dimensional inviscid channel flow of an incompressible fluid is considered. It is shown that if the flow is steady and features no horizontal stagnation, then the flow must necessarily be a parallel shear flow.
DOI : 10.1051/mmnp/20127207

H. Kalisch 1

1 University of Bergen, Department of Mathematics, P.O. Box 7800, 5020 Bergen, Norway
@article{MMNP_2012_7_2_a6,
     author = {H. Kalisch},
     title = {Nonexistence of {Coherent} {Structures} in {Two-dimensional} {Inviscid} {Channel} {Flow}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127207/}
}
TY  - JOUR
AU  - H. Kalisch
TI  - Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 77
EP  - 82
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127207/
DO  - 10.1051/mmnp/20127207
LA  - en
ID  - MMNP_2012_7_2_a6
ER  - 
%0 Journal Article
%A H. Kalisch
%T Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow
%J Mathematical modelling of natural phenomena
%D 2012
%P 77-82
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127207/
%R 10.1051/mmnp/20127207
%G en
%F MMNP_2012_7_2_a6
H. Kalisch. Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 77-82. doi : 10.1051/mmnp/20127207. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127207/

[1] M. Bjørkavåg, H. Kalisch Phys. Lett. A 2011 157 1578

[2] A. Constantin, M. Ehrnström, E. Wahlén Duke Math. J. 2007 591 603

[3] A. Constantin, W. Strauss Comm. Pure Appl. Math. 2004 481 527

[4] W. Craig Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002 2127 2135

[5] P.G. Drazin, W.H. Reid. Hydrodynamic stability. Cambridge University Press, Cambridge, 2004.

[6] M.-L. Dubreil-Jacotin J. Math. Pures Appl. 1934 217 291

[7] M.-L. Dubreil-Jacotin J. Math. Pures Appl. 1937 43 67

[8] M. Ehrnström J. Nonlinear Math. Phys. 2006 1 8

[9] M. Ehrnström Int. Math. Res. Not. 2005 3721 3726

[10] L.E. Fraenkel Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2008 2717 2728

[11] S. Friedlander, W. Strauss, M. Vishik Ann. Inst. H. Poincaré Anal. Non Linéaire 1997 187 209

[12] D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften 224, Springer, Berlin-New York, 1977.

[13] O. Goubet Appl. Math. Optim. 1996 361 365

[14] B. Hof, C.W.H. Van Doorne, J. Westerweel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, F. Waleffe Science 2004 1594 1598

[15] V.M Hur, Z. Lin Comm. Math. Phys. 2008 733 796

[16] N.H. Ibragimov, R Aitbayev, R.N. Ibragimov Commun. Nonlinear Sci. and Numer. Simul. 2009 3811 3820

[17] R.N. Ibragimov, D.E. Pelinovsky Commun. Nonlinear Sci. and Numer. Simul. 2008 2104 2113

[18] H. Kalisch J. Nonlinear Math. Phys. 2004 461 471

[19] H. Kalisch Nonlinear Anal. 2004 779 785

[20] W. Thomson Nature 1880 45 46

[21] H. Lamb. Hydrodynamics. Cambridge University Press, London, 1924.

[22] P. Moin, J. Kim J. Fluid Mech. 1982 341 377

[23] A.E. Trefethen, L.N. Trefethen, P.J. Schmid Comput. Methods Appl. Mech. Engrg. 1999 413 420

[24] E. Wahlén J. Differential Equations 2009 2468 2483

[25] F. Waleffe Phys. Fluids 2003 1517 1534

[26] P.O. Åsén, G. Kreiss J. Math. Fluid Mech. 2007 153 180

Cité par Sources :